Monthly Archives: February 2018

Video: Introducing the Tic Stepper Motor Controllers

via Pololu Blog

Our Tic Stepper Motor Controllers make basic control of stepper motors easy. This quick video shows you all the control interfaces you can use with our Tics to add stepper motors to your projects:


Making this video was actually the first time I’ve had a chance to play around with the Tics, and I was pleasantly surprised at how quickly I was able to set up the Tic with each interface option. Once I had everything connected, it only took a few minutes using the control software to get things moving for each setup.

This video also gives a sneak peek of our new Tic T500 (the red Tics in the opening shot). Like our new stepper motor drivers, the T500s are based on the MPS MP6500 bipolar stepper motor driver. Keep an eye on this blog for their release in the coming weeks.

Element14 begins pre-sales of the TI Robotics System Learning Kit (TI-RSLK)

via Pololu Blog

TI Robotics System Learning Kit banner courtesy of university.ti.com.

As we posted a few weeks ago, Texas Instruments recently announced that they were launching a new curriculum designed for university students and based upon our Romi robot platform.

Today, element14 announced pre-order sales of the three kit options. We hear interest has been very strong, so make sure to reserve yours right away if you want to get one from the initial production run. If you do get one, let us know what you think of it!

Small motor controller with integrated position sensor

via Dangerous Prototypes

pdouble_board-600

Ben Katz writes:

A while ago I added the hall effect encoder IC I’ve been using directly to the motor controller PCB.  The controller sits directly on the back of the motor (with a magnet added to the motor shaft), and the phase wires solder straight in.  I also have a pair of board-mounted XT30 connectors on the DC bus for easy daisy-chaining.  Otherwise, the board is basically identical to the previous version of this controller.  I’ve now built over a dozen of these, and have had no problems.

See the full post on BuildIts in Progress blog.

Welcome new OSHWA board members, thank you to the members stepping down

via Open Source Hardware Association

Hello to the new board members, Akiba, Arielle, and David, joining the OSHWA team!

Each board member will be helping the organization continue to grow through contributions drawn from an amazing array of backgrounds and experiences in hackerspaces, makerspaces, academics, OSHW businesses, government relations, and much more!

We also thank the board members stepping down, Jeff, Joel, and Katherine, for contributing their time and experience to steer the organization and influence the open source hardware community as a whole. We appreciate the efforts everyone has put and will put into The Open Source Hardware Association!

Akiba

Akiba has been designing open source hardware for the past ten years and has run an open source hardware company for the same amount of time. I’ve put together or have been involved putting together four hackerspaces (Tokyo Hackerspace, Mothership Hackermoms, Knowledge Garden Dharamsala, and HackerFarm) and understand the importance of building, maintaining, and growing community.

 

Arielle Hein

Arielle is a graduate studies alumni of ITP NYU and has worked extensively with Open Source Hardware consistently since then. In her current role as an Instructor at the University of Colorado, she teaches interaction design and physical computing courses that rely heavily on open source tools. She also offers extensive community organizing experience through ongoing work as the Coordinator of ITP Camp.

 

 

 

 

 

David Li

David has been an open source and free software contributor since 1990 on various of projects. Ardublock, developed in 2012, is one of the most popular graphical development environments for Arduino. His experiences include research in the area of open hardware ecosystem in China since 2011, director of the ObjectWeb (a European based open source software consortium) in 2003-2006, and has contributed to the joint effort between ObjectWeb and major Chinese open source software projects.

 

Happy birthday to us!

via Raspberry Pi

The eagle-eyed among you may have noticed that today is 28 February, which is as close as you’re going to get to our sixth birthday, given that we launched on a leap day. For the last three years, we’ve launched products on or around our birthday: Raspberry Pi 2 in 2015; Raspberry Pi 3 in 2016; and Raspberry Pi Zero W in 2017. But today is a snow day here at Pi Towers, so rather than launching something, we’re taking a photo tour of the last six years of Raspberry Pi products before we don our party hats for the Raspberry Jam Big Birthday Weekend this Saturday and Sunday.

Prehistory

Before there was Raspberry Pi, there was the Broadcom BCM2763 ‘micro DB’, designed, as it happens, by our very own Roger Thornton. This was the first thing we demoed as a Raspberry Pi in May 2011, shown here running an ARMv6 build of Ubuntu 9.04.

BCM2763 micro DB

Ubuntu on Raspberry Pi, 2011-style

A few months later, along came the first batch of 50 “alpha boards”, designed for us by Broadcom. I used to have a spreadsheet that told me where in the world each one of these lived. These are the first “real” Raspberry Pis, built around the BCM2835 application processor and LAN9512 USB hub and Ethernet adapter; remarkably, a software image taken from the download page today will still run on them.

Raspberry Pi alpha board, top view

Raspberry Pi alpha board

We shot some great demos with this board, including this video of Quake III:

Raspberry Pi – Quake 3 demo

A little something for the weekend: here’s Eben showing the Raspberry Pi running Quake 3, and chatting a bit about the performance of the board. Thanks to Rob Bishop and Dave Emett for getting the demo running.

Pete spent the second half of 2011 turning the alpha board into a shippable product, and just before Christmas we produced the first 20 “beta boards”, 10 of which were sold at auction, raising over £10000 for the Foundation.

The beginnings of a Bramble

Beta boards on parade

Here’s Dom, demoing both the board and his excellent taste in movie trailers:

Raspberry Pi Beta Board Bring up

See http://www.raspberrypi.org/ for more details, FAQ and forum.

Launch

Rather to Pete’s surprise, I took his beta board design (with a manually-added polygon in the Gerbers taking the place of Paul Grant’s infamous red wire), and ordered 2000 units from Egoman in China. After a few hiccups, units started to arrive in Cambridge, and on 29 February 2012, Raspberry Pi went on sale for the first time via our partners element14 and RS Components.

Pallet of pis

The first 2000 Raspberry Pis

Unboxing continues

The first Raspberry Pi from the first box from the first pallet

We took over 100000 orders on the first day: something of a shock for an organisation that had imagined in its wildest dreams that it might see lifetime sales of 10000 units. Some people who ordered that day had to wait until the summer to finally receive their units.

Evolution

Even as we struggled to catch up with demand, we were working on ways to improve the design. We quickly replaced the USB polyfuses in the top right-hand corner of the board with zero-ohm links to reduce IR drop. If you have a board with polyfuses, it’s a real limited edition; even more so if it also has Hynix memory. Pete’s “rev 2” design made this change permanent, tweaked the GPIO pin-out, and added one much-requested feature: mounting holes.

Revision 1 versus revision 2

If you look carefully, you’ll notice something else about the revision 2 board: it’s made in the UK. 2012 marked the start of our relationship with the Sony UK Technology Centre in Pencoed, South Wales. In the five years since, they’ve built every product we offer, including more than 12 million “big” Raspberry Pis and more than one million Zeros.

Celebrating 500,000 Welsh units, back when that seemed like a lot

Economies of scale, and the decline in the price of SDRAM, allowed us to double the memory capacity of the Model B to 512MB in the autumn of 2012. And as supply of Model B finally caught up with demand, we were able to launch the Model A, delivering on our original promise of a $25 computer.

A UK-built Raspberry Pi Model A

In 2014, James took all the lessons we’d learned from two-and-a-bit years in the market, and designed the Model B+, and its baby brother the Model A+. The Model B+ established the form factor for all our future products, with a 40-pin extended GPIO connector, four USB ports, and four mounting holes.

The Raspberry Pi 1 Model B+ — entering the era of proper product photography with a bang.

New toys

While James was working on the Model B+, Broadcom was busy behind the scenes developing a follow-on to the BCM2835 application processor. BCM2836 samples arrived in Cambridge at 18:00 one evening in April 2014 (chips never arrive at 09:00 — it’s always early evening, usually just before a public holiday), and within a few hours Dom had Raspbian, and the usual set of VideoCore multimedia demos, up and running.

We launched Raspberry Pi 2 at the start of 2015, pairing BCM2836 with 1GB of memory. With a quad-core Arm Cortex-A7 clocked at 900MHz, we’d increased performance sixfold, and memory fourfold, in just three years.

Nobody mention the zenon death flash.

And of course, while James was working on Raspberry Pi 2, Broadcom was developing BCM2837, with a quad-core 64-bit Arm Cortex-A53 clocked at 1.2GHz. Raspberry Pi 3 launched barely a year after Raspberry Pi 2, providing a further doubling of performance and, for the first time, wireless LAN and Bluetooth.

All our recent products are just the same board shot from different angles

Zero to hero

Where the PC industry has historically used Moore’s Law to “fill up” a given price point with more performance each year, the original Raspberry Pi used Moore’s law to deliver early-2000s PC performance at a lower price. But with Raspberry Pi 2 and 3, we’d gone back to filling up our original $35 price point. After the launch of Raspberry Pi 2, we started to wonder whether we could pull the same trick again, taking the original Raspberry Pi platform to a radically lower price point.

The result was Raspberry Pi Zero. Priced at just $5, with a 1GHz BCM2835 and 512MB of RAM, it was cheap enough to bundle on the front of The MagPi, making us the first computer magazine to give away a computer as a cover gift.

Cheap thrills

MagPi issue 40 in all its glory

We followed up with the $10 Raspberry Pi Zero W, launched exactly a year ago. This adds the wireless LAN and Bluetooth functionality from Raspberry Pi 3, using a rather improbable-looking PCB antenna designed by our buddies at Proant in Sweden.

Up to our old tricks again

Other things

Of course, this isn’t all. There has been a veritable blizzard of point releases; RAM changes; Chinese red units; promotional blue units; Brazilian blue-ish units; not to mention two Camera Modules, in two flavours each; a touchscreen; the Sense HAT (now aboard the ISS); three compute modules; and cases for the Raspberry Pi 3 and the Zero (the former just won a Design Effectiveness Award from the DBA). And on top of that, we publish three magazines (The MagPi, Hello World, and HackSpace magazine) and a whole host of Project Books and Essentials Guides.

Chinese Raspberry Pi 1 Model B

RS Components limited-edition blue Raspberry Pi 1 Model B

Brazilian-market Raspberry Pi 3 Model B

Visible-light Camera Module v2

Learning about injection moulding the hard way

250 pages of content each month, every month

Essential reading

Forward the Foundation

Why does all this matter? Because we’re providing everyone, everywhere, with the chance to own a general-purpose programmable computer for the price of a cup of coffee; because we’re giving people access to tools to let them learn new skills, build businesses, and bring their ideas to life; and because when you buy a Raspberry Pi product, every penny of profit goes to support the Raspberry Pi Foundation in its mission to change the face of computing education.

We’ve had an amazing six years, and they’ve been amazing in large part because of the community that’s grown up alongside us. This weekend, more than 150 Raspberry Jams will take place around the world, comprising the Raspberry Jam Big Birthday Weekend.

Raspberry Pi Big Birthday Weekend 2018. GIF with confetti and bopping JAM balloons

If you want to know more about the Raspberry Pi community, go ahead and find your nearest Jam on our interactive map — maybe we’ll see you there.

The post Happy birthday to us! appeared first on Raspberry Pi.

March is National Craft Month, and SparkFun is Joining the Party!

via SparkFun: Commerce Blog

BIG news, everyone. The month of March, aka National Craft Month, has arrived. This monthlong national celebration was established in 1994 by the Craft & Hobby Association (thanks, guys!) to help people rediscover and learn about the wonderful world of crafting and its many benefits. Ah, such a beautiful idea.

I use craft quite heavily in my work, and being a capable crafter continues to help me learn and master programmable electronics. In fact, in many ways I consider my physical computing skills as a set of creative tools with the purpose of enhancing and growing my craft practice. Needless to say, as a pretty aggressive craft advocate, this special month is near and dear to my heart. You’d better believe I am planning to celebrate this momentous month by continuing to publicly obsess over the marriage of craft and electronics, or, more elegantly, e-crafting.

In order to get everyone in the crafty head space for National Craft Month, let’s take a look back at some of our favorite recent projects at the intersection of craft and tech.

Stay tuned this March for upcoming Craft Month posts and let us know about ways you have combined crafts and electronics in the comments below!

comments | comment feed