Author Archives: David Honess

Astro Pi upgrades launch today!

via Raspberry Pi

Before our beloved SpaceDave left the Raspberry Pi Foundation to join the ranks of the European Space Agency (ESA) — and no, we’re still not jealous *ahem* — he kindly drafted us one final blog post about the Astro Pi upgrades heading to the International Space Station today! So here it is. Enjoy!

We are very excited to announce that Astro Pi upgrades are on their way to the International Space Station! Back in September, we blogged about a small payload being launched to the International Space Station to upgrade the capabilities of our Astro Pi units.

Astro Pi Raspberry Pi International Space Station

Sneak peek

For the longest time, the payload was scheduled to be launched on SpaceX CRS 14 in February. However, the launch was delayed to April and so impacted the flight operations we have planned for running Mission Space Lab student experiments.

To avoid this, ESA had the payload transferred to Russian Soyuz MS-08 (54S), which is launching today to carry crew members Oleg Artemyev, Andrew Feustel, and Ricky Arnold to the ISS.

Ricky Arnold on Twitter

L-47 hours.

You can watch coverage of the launch on NASA TV from 4.30pm GMT this afternoon, with the launch scheduled for 5.44pm GMT. Check the NASA TV schedule for updates.

The upgrades

The pictures below show the flight hardware in its final configuration before loading onto the launch vehicle.

Wireless dongle in bag — Astro Pi upgrades

All access

With the wireless dongle, the Astro Pi units can be deployed in ISS locations other than the Columbus module, where they don’t have access to an Ethernet switch.

We are also sending some flexible optical filters. These are made from the same material as the blue square which is shipped with the Raspberry Pi NoIR Camera Module.

Optical filters in bag — Astro Pi upgrades


So that future Astro Pi code will need to command fewer windows to download earth observation imagery to the ground, we’re also including some 32GB micro SD cards to replace the current 8GB cards.

Micro SD cards in bag — Astro Pi upgrades

More space in space

Tthe items above are enclosed in a large 8″ ziplock bag that has been designated the “AstroPi Kit”.

bag of Astro Pi upgrades

It’s ziplock bags all the way down up

Once the Soyuz docks with the ISS, this payload is one of the first which will be unpacked, so that the Astro Pi units can be upgraded and deployed ready to run your experiments!

More Astro Pi

Stay tuned for our next update in April, when student code is set to be run on the Astro Pi units as part of our Mission Space Lab programme. And to find out more about Astro Pi, head to the programme website.

The post Astro Pi upgrades launch today! appeared first on Raspberry Pi.

Astro Pi celebrates anniversary of ISS Columbus module

via Raspberry Pi

Right now, 400km above the Earth aboard the International Space Station, are two very special Raspberry Pi computers. They were launched into space on 6 December 2015 and are, most assuredly, the farthest-travelled Raspberry Pi computers in existence. Each year they run experiments that school students create in the European Astro Pi Challenge.

Raspberry Astro Pi units on the International Space Station

Left: Astro Pi Vis (Ed); right: Astro Pi IR (Izzy). Image credit: ESA.

The European Columbus module

Today marks the tenth anniversary of the launch of the European Columbus module. The Columbus module is the European Space Agency’s largest single contribution to the ISS, and it supports research in many scientific disciplines, from astrobiology and solar science to metallurgy and psychology. More than 225 experiments have been carried out inside it during the past decade. It’s also home to our Astro Pi computers.

Here’s a video from 7 February 2008, when Space Shuttle Atlantis went skywards carrying the Columbus module in its cargo bay.

STS-122 Launch NASA TV Coverage

From February 7th, 2008 NASA-TV Coverage of The 121st Space Shuttle Launch Launched At:2:45:30 P.M E.T – Coverage begins exactly one hour till launch STS-122 Crew:

Today, coincidentally, is also the deadline for the European Astro Pi Challenge: Mission Space Lab. Participating teams have until midnight tonight to submit their experiments.

Anniversary celebrations

At 16:30 GMT today there will be a live event on NASA TV for the Columbus module anniversary with NASA flight engineers Joe Acaba and Mark Vande Hei.

Our Astro Pi computers will be joining in the celebrations by displaying a digital birthday candle that the crew can blow out. It works by detecting an increase in humidity when someone blows on it. The video below demonstrates the concept.

AstroPi candle

Uploaded by Effi Edmonton on 2018-01-17.

Do try this at home

The exact Astro Pi code that will run on the ISS today is available for you to download and run on your own Raspberry Pi and Sense HAT. You’ll notice that the program includes code to make it stop automatically when the date changes to 8 February. This is just to save time for the ground control team.

If you have a Raspberry Pi and a Sense HAT, you can use the terminal commands below to download and run the code yourself:

wget -O
chmod +x

When you see a blank blue screen with the brightness increasing, the Sense HAT is measuring the baseline humidity. It does this every 15 minutes so it can recalibrate to take account of natural changes in background humidity. A humidity increase of 2% is needed to blow out the candle, so if the background humidity changes by more than 2% in 15 minutes, it’s possible to get a false positive. Press Ctrl + C to quit.

Please tweet pictures of your candles to @astro_pi – we might share yours! And if we’re lucky, we might catch a glimpse of the candle on the ISS during the NASA TV event at 16:30 GMT today.

The post Astro Pi celebrates anniversary of ISS Columbus module appeared first on Raspberry Pi.

Astro Pi Mission Zero: your code is in space

via Raspberry Pi

Every school year, we run the European Astro Pi challenge to find the next generation of space scientists who will program two space-hardened Raspberry Pi units, called Astro Pis, living aboard the International Space Station.

Italian ESA Astronaut Paolo Nespoli with the Astro Pi units. Image credit ESA.

Astro Pi Mission Zero

The 2017–2018 challenge included the brand-new non-competitive Mission Zero, which guaranteed that participants could have their code run on the ISS for 30 seconds, provided they followed the rules. They would also get a certificate showing the exact time period during which their code ran in space.

Astro Pi Mission Zero logo

We asked participants to write a simple Python program to display a personalised message and the air temperature on the Astro Pi screen. No special hardware was needed, since all the code could be written in a web browser using the Sense HAT emulator developed in partnership with Trinket.

Scott McKenzie on Twitter

Students coding #astropi emulator to scroll a message to astronauts on @Raspberry_Pi in space this summer. Try it here: #Rm9Parents #CSforAll #ontariocodes

And now it’s time…

We received over 2500 entries for Mission Zero, and we’re excited to announce that tomorrow all entries with flight status will be run on the ISS…in SPAAACE!

There are 1771 Python programs with flight status, which will run back-to-back on Astro Pi VIS (Ed). The whole process will take about 14 hours. This means that everyone will get a timestamp showing the 1 February, so we’re going to call this day Mission Zero Day!

Part of each team’s certificate will be a map, like the one below, showing the exact location of the ISS while the team’s code was running.

The grey line is the ISS orbital path, the red marker shows the ISS’s location when their code was running. Produced using Google Static Maps API.

The programs will be run in the same sequence in which we received them. For operational reasons, we can’t guarantee that they will run while the ISS flies over any particular location. However, if you have submitted an entry to Mission Zero, there is a chance that your code will run while the ISS is right overhead!

Go out and spot the station

Spotting the ISS is a great activity to do by yourself or with your students. The station looks like a very fast-moving star that crosses the sky in just a few minutes. If you know when and where to look, and it’s not cloudy, you literally can’t miss it.

Source Andreas Möller, Wikimedia Commons.

The ISS passes over most ground locations about twice a day. For it to be clearly visible though, you need darkness on the ground with sunlight on the ISS due to its altitude. There are a number of websites which can tell you when these visible passes occur, such as NASA’s Spot the Station. Each of the sites requires you to give your location so it can work out when visible passes will occur near you.

Visible ISS pass star chart from Heavens Above, on which familiar constellations such as the Plough (see label Ursa Major) can be seen.

A personal favourite of mine is Heavens Above. It’s slightly more fiddly to use than other sites, but it produces brilliant star charts that show you precisely where to look in the sky. This is how it works:

  1. Go to
  2. To set your location, click on Unspecified in the top right-hand corner
  3. Enter your location (e.g. Cambridge, United Kingdom) into the text box and click Search
  4. The map should change to the correct location — scroll down and click Update
  5. You’ll be taken back to the homepage, but with your location showing at the top right
  6. Click on ISS in the Satellites section
  7. A table of dates will now show, which are the upcoming visible passes for your location
  8. Click on a row to view the star chart for that pass — the line is the path of the ISS, and the arrow shows direction of travel
  9. Be outside in cloudless weather at the start time, look towards the direction where the line begins, and hope the skies stay clear

If you go out and do this, then tweet some pictures to @raspberry_pi, @astro_pi, and @esa. Good luck!

More Astro Pi

Mission Zero certificates will be arriving in participants’ inboxes shortly. We would like to thank everyone who participated in Mission Zero this school year, and we hope that next time you’ll take it one step further and try Mission Space Lab.

Mission Zero and Mission Space Lab are two really exciting programmes that young people of all ages can take part in. If you would like to be notified when the next round of Astro Pi opens for registrations, sign up to our mailing list here.

The post Astro Pi Mission Zero: your code is in space appeared first on Raspberry Pi.

Announcing the 2017-18 European Astro Pi challenge!

via Raspberry Pi

Astro Pi is back! Today we’re excited to announce the 2017-18 European Astro Pi challenge in partnership with the European Space Agency (ESA). We are searching for the next generation of space scientists.


Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.

Astro Pi is an annual science and coding competition where student-written code is run on the International Space Station under the oversight of an ESA astronaut. The challenge is open to students from all 22 ESA member countries, including — for the first time — associate members Canada and Slovenia.

The format of the competition is changing slightly this year, and we also have a brand-new non-competitive mission in which participants are guaranteed to have their code run on the ISS for 30 seconds!

Mission Zero

Until now, students have worked on Astro Pi projects in an extra-curricular context and over multiple sessions. For teachers and students who don’t have much spare capacity, we wanted to provide an accessible activity that teams can complete in just one session.

So we came up with Mission Zero for young people no older than 14. To complete it, form a team of two to four people and use our step-by-step guide to help you write a simple Python program that shows your personal message and the ambient temperature on the Astro Pi. If you adhere to a few rules, your code is guaranteed to run in space for 30 seconds, and you’ll receive a certificate showing the exact time period during which your code has run in space. No special hardware is needed for this mission, since everything is done in a web browser.

Mission Zero is open until 26 November 2017! Find out more.

Mission Space Lab

Students aged up to 19 can take part in Mission Space Lab. Form a team of two to six people, and work like real space scientists to design your own experiment. Receive free kit to work with, and write the Python code to carry out your experiment.

There are two themes for Mission Space Lab teams to choose from for their projects:

  • Life in space
    You will make use of Astro Pi Vis (“Ed”) in the European Columbus module. You can use all of its sensors, but you cannot record images or videos.
  • Life on Earth
    You will make use of Astro Pi IR (“Izzy”), which will be aimed towards the Earth through a window. You can use all of its sensors and its camera.

The Astro Pi kit, delivered to Space Lab teams by ESA

If you achieve flight status, your code will be uploaded to the ISS and run for three hours (two orbits). All the data that your code records in space will be downloaded and returned to you for analysis. Then submit a short report on your findings to be in with a chance to win exclusive, money-can’t-buy prizes! You can also submit your project for a Bronze CREST Award.

Mission Space Lab registration is open until 29 October 2017, and accepted teams will continue to spring 2018. Find out more.

How do I get started?

There are loads of materials available that will help you begin your Astro Pi journey — check out the Getting started with the Sense HAT resource and this video explaining how to build the flight case.


If you have any questions, please post them in the comments below. We’re standing by to answer them!

The post Announcing the 2017-18 European Astro Pi challenge! appeared first on Raspberry Pi.

Astro Pi upgrades on the International Space Station

via Raspberry Pi

In 2015, The Raspberry Pi Foundation built two space-hardened Raspberry Pi units, or Astro Pis, to run student code on board the International Space Station (ISS).

Astro Pi

A space-hardened Raspberry Pi

Astro Pi upgrades

Each school year we run an Astro Pi challenge to find the next generation of space scientists to program them. After the students have their code run in space, any output files are downloaded to ground and returned to them for analysis.

That download process was originally accomplished by an astronaut shutting down the Astro Pi, moving its micro SD card to a crew laptop and copying over the files manually. This used about 20 minutes of precious crew time.

space pi – Create, Discover and Share Awesome GIFs on Gfycat

Watch space pi GIF by sooperdave on Gfycat. Discover more GIFS online on Gfycat

Last year, we passed the qualification to allow the Astro Pi computers to be connected to the Local Area Network (LAN) on board the ISS. This allows us to remotely access them from the ground, upload student code and download the results without having to involve the crew.

This year, we have been preparing a new payload to upgrade the operational capabilities of the Astro Pi units.

The payload consists of the following items:

  • 2 × USB WiFi dongles
  • 5 × optical filters
  • 4 × 32GB micro SD cards

Before anyone asks – no, we’re not going outside into the vacuum of space!

USB WiFi dongle

Currently both Astro Pi units are located in the European Columbus module. They’re even visible on Google Street View (pan down and right)! You can see that we’ve created a bit of a bird’s nest of wires behind them.

Astro Pi

The D-Link DWA-171

The decision to add WiFi capability is partly to clean up the cabling situation, but mainly so that the Astro Pi units can be deployed in ISS locations other than the Columbus module, where we won’t have access to an Ethernet switch.

The Raspberry Pi used in the Astro Pi flight units is the B+ (released in 2014), which does not have any built in wireless connectivity, so we need to use a USB dongle. This particular D-Link dongle was recommended by the European Space Agency (ESA) because a number of other payloads are already using it.

Astro Pi

An Astro Pi unit with WiFi dongle installed

Plans have been made for one of the Astro Pi units to be deployed on an Earth-facing window, to allow Earth-observation student experiments. This is where WiFi connectivity will be required to maintain LAN access for ground control.

Optical filters

With Earth-observation experiments in mind, we are also sending some flexible film optical filters. These are made from the same material as the blue square which is shipped with the Pi NoIR camera module, as noted in this post from when the product was launched. You can find the data sheet here.

Astro Pi

Rosco Roscalux #2007 Storaro Blue

To permit the filter to be easily attached to the Astro Pi unit, the film is laser-cut to friction-fit onto the 12 inner heatsink pins on the base, so that the camera aperture is covered.

Astro Pi

Laser cutting at Makespace

The laser-cutting work was done right here in Cambridge at Makespace by our own Alex Bate, and local artist Diana Probst.

Astro Pi

An Astro Pi with the optical filter installed

32GB micro SD cards

A consequence of running Earth observation experiments is a dramatic increase in the amount of disk space needed. To avoid a high frequency of commanding windows to download imagery to ground, we’re also flying some larger 32GB micro SD cards to replace the current 8GB cards.

Astro Pi

The Samsung Evo MB-MP32DA/EU

This particular type of micro SD card is X-ray proof, waterproof, and resistant to magnetism and heat. Operationally speaking there is no difference, other than the additional available disk space.

Astro Pi

An Astro Pi unit with the new micro SD card installed

The micro SD cards will be flown with a security-hardened version of Raspbian pre-installed.

Crew activities

We have several crew activities planned for when this payload arrives on the ISS. These include the installation of the upgrade items on both Astro Pi units; moving one of the units from Columbus to an earth-facing window (possibly in Node 2); and then moving it back a few weeks later.

Currently it is expected that these activities will be carried out by German ESA astronaut Alexander Gerst who launches to the ISS in November (and will also be the ISS commander for Expedition 57).

Payload launch

We are targeting a January 2018 launch date for the payload. The exact launch vehicle is yet to be determined, but it could be SpaceX CRS 14. We will update you closer to the time.


If you have any questions about this payload, how an item works, or why that specific model was chosen, please post them in the comments below, and we’ll try to answer them.

The post Astro Pi upgrades on the International Space Station appeared first on Raspberry Pi.

Sense HAT Emulator Upgrade

via Raspberry Pi

Last year, we partnered with Trinket to develop a web-based emulator for the Sense HAT, the multipurpose add-on board for the Raspberry Pi. Today, we are proud to announce an exciting new upgrade to the emulator. We hope this will make it even easier for you to design amazing experiments with the Sense HAT!

What’s new?

The original release of the emulator didn’t fully support all of the Sense HAT features. Specifically, the movement sensors were not emulated. Thanks to funding from the UK Space Agency, we are delighted to announce that a new round of development has just been completed. From today, the movement sensors are fully supported. The emulator also comes with a shiny new 3D interface, Astro Pi skin mode, and Pygame event handling. Click the ▶︎ button below to see what’s new!

Upgraded sensors

On a physical Sense HAT, real sensors react to changes in environmental conditions like fluctuations in temperature or humidity. The emulator has sliders which are designed to simulate this. However, emulating the movement sensor is a bit more complicated. The upgrade introduces a 3D slider, which is essentially a model of the Sense HAT that you can move with your mouse. Moving the model affects the readings provided by the accelerometer, gyroscope, and magnetometer sensors.

Code written in this emulator is directly portable to a physical Raspberry Pi and Sense HAT without modification. This means you can now develop and test programs using the movement sensors from any internet-connected computer, anywhere in the world.

Astro Pi mode

Astro Pi is our series of competitions offering students the chance to have their code run in space! The code is run on two space-hardened Raspberry Pi units, with attached Sense HATs, on the International Space Station.

Image of Astro Pi unit Sense HAT emulator upgrade

Astro Pi skin mode

There are a number of practical things that can catch you out when you are porting your Sense HAT code to an Astro Pi unit, though, such as the orientation of the screen and joystick. Just as having a 3D-printed Astro Pi case enables you to discover and overcome these, so does the Astro Pi skin mode in this emulator. In the bottom right-hand panel, there is an Astro Pi button which enables the mode: click it again to go back to the Sense HAT.

The joystick and push buttons are operated by pressing your keyboard keys: use the cursor keys and Enter for the joystick, and U, D, L, R, A, and B for the buttons.

Sense Hat resources for Code Clubs

Image of gallery of Code Club Sense HAT projects Sense HAT emulator upgrade

Click the image to visit the Code Club projects page

We also have a new range of Code Club resources which are based on the emulator. Of these, three use the environmental sensors and two use the movement sensors. The resources are an ideal way for any Code Club to get into physical computing.

The technology

The 3D models in the emulator are represented entirely with HTML and CSS. “This project pushed the Trinket team, and the 3D web, to its limit,” says Elliott Hauser, CEO of Trinket. “Our first step was to test whether pure 3D HTML/CSS was feasible, using Julian Garnier’s Tridiv.”

Sense HAT 3D image mockup Sense HAT emulator upgrade

The Trinket team’s preliminary 3D model of the Sense HAT

“We added JavaScript rotation logic and the proof of concept worked!” Elliot continues. “Countless iterations, SVG textures, and pixel-pushing tweaks later, the finished emulator is far more than the sum of its parts.”

Sense HAT emulator 3d image final version Sense HAT emulator upgrade

The finished Sense HAT model: doesn’t it look amazing?

Check out this blog post from Trinket for more on the technology and mathematics behind the models.

One of the compromises we’ve had to make is browser support. Unfortunately, browsers like Firefox and Microsoft Edge don’t fully support this technology yet. Instead, we recommend that you use Chrome, Safari, or Opera to access the emulator.

Where do I start?

If you’re new to the Sense HAT, you can simply copy and paste many of the code examples from our educational resources, like this one. Alternatively, you can check out our Sense HAT Essentials e-book. For a complete list of all the functions you can use, have a look at the Sense HAT API reference here.

The post Sense HAT Emulator Upgrade appeared first on Raspberry Pi.