Author Archives: Helen Lynn

Argon ONE: a super case for your Raspberry Pi

via Raspberry Pi

The friendly people at Argon40, one of our Approved Resellers in Hong Kong, have an already-successful Kickstarter on the go for their Argon ONE Raspberry Pi case. I’ve got one of them on my desk at the moment. It’s a very pleasing object. “That’s quite nice,” enthuses Gordon, who isn’t very good at enthusing.

The Argon ONE: look at the shiny!

The Argon ONE is a nifty little aluminium-alloy case that offers well thought-through cable, power, and temperature management. We chatted to Joseph from Argon40 about the team’s development process, and he explained:

When we started the project, we initially designed the product to suit our needs based on our experiences of playing around with the Raspberry Pi. We wanted a case that is nice to look and at the same time has all the basic features that we loved about the Raspberry Pi: small footprint, access to GPIO, low power consumption. Then we looked into the nice-to-have stuff like good heat dissipation for better performance, a proper shut-down, and a form factor that is elegant but not extravagant.

Clicky magnets

What I find particularly satisfying about the Argon ONE is its GPIO access. It has a neat recess with clear pin labels and access to an inbuilt, colour-coded header that connects to your Pi’s GPIO pins. When you’re not using the pins, you probably want to keep them away from dust, spilled coffee, and the gross candy-corn M&Ms that Alex sometimes throws at you for literally no reason. The Argon ONE helps you out here: a cover fits perfectly over the GPIO recess, held in place by magnets that are just exactly strong enough for the job. Being a fidgeter, I find that this lends itself to compulsive clicking.

*click* *click* *click*

Injection moulding

We like the build quality here, especially at this price point (it’s HK$157, US$20, or GB£15, and early-bird pledges are cheaper). The Argon40 team was keen to use alumnium for the upper part of the case, for robustness and durability along with good looks; that proved a challenge, given that they wanted to keep the case affordable. “Fortunately, we found a factory that allowed us to do aluminum-alloy injection instead of going for the CNC option,” says Joseph.

“Have you tried turning if off and on again?”

The Raspberry Pi doesn’t have a power button, and we hear a lot from people who’d like it to. Happily, our community has come up with lots of ways to add one: this case, for example. Once you install Argon40’s shutdown script in Raspbian, pressing the case’s power button will run the script to shut the Pi down cleanly, then cut the power.

Find out more on Kickstarter — this campaign is well worth a look if you’re after a decent case. Back to Joseph for the last word, with which we heartily agree:

At the end of the day, our goal is for people to have their Raspberry Pis on top of their work desks, study tables, and workstations and in their living rooms, instead of keeping their barebones Pi tucked inside a drawer. Because as the saying goes, “Out of sight, out of mind,” which means that if they don’t see their Raspberry Pi, they won’t be able to tinker around with it or play with it to create projects.

The post Argon ONE: a super case for your Raspberry Pi appeared first on Raspberry Pi.

Take a photo of yourself as an unreliable cartoon

via Raspberry Pi

Take a selfie, wait for the image to appear, and behold a cartoon version of yourself. Or, at least, behold a cartoon version of whatever the camera thought it saw. Welcome to Draw This by maker Dan Macnish.

Dan has made code, instructions, and wiring diagrams available to help you bring this beguiling weirdery into your own life.

raspberry pi cartoon polaroid camera

Neural networks, object recognition, and cartoons

One of the fun things about this re-imagined polaroid is that you never get to see the original image. You point, and shoot – and out pops a cartoon; the camera’s best interpretation of what it saw. The result is always a surprise. A food selfie of a healthy salad might turn into an enormous hot dog, or a photo with friends might be photobombed by a goat.

OK. Let’s take this one step at a time.

Pi + camera + button + LED

Draw This uses a Raspberry Pi 3 and a Camera Module, with a button and a useful status LED connected to the GPIO pins via a breadboard. You press the button, and the camera captures a still image while the LED comes on and stays lit for a couple of seconds while the Pi processes the image. So far, so standard Pi camera build.

Interpreting and re-interpreting the camera image

Dan uses Python to process the captured photograph, employing a pre-trained machine learning model from Google to recognise multiple objects in the image. Now he brings the strangeness. The Pi matches the things it sees in the photo with doodles from Google’s huge open-source Quick, Draw! dataset, and generates a new image that represents the objects in the original image as doodles. Then a thermal printer connected to the Pi’s GPIO pins prints the results.

A 28 x 14 grid of kangaroo doodles in dark grey on a white background

Kangaroos from the Quick, Draw! dataset (I got distracted)

Potential for peculiar

Reading about this build leaves me yearning to see its oddest interpretation of a scene, so if you make this and you find it really does turn you or your friend into a goat, please do share that with us.

And as you can see from my kangaroo digression above, there is a ton of potential for bizarro makes that use the Quick, Draw! dataset, object recognition models, or both; it’s not just the marsupials that are inexplicably compelling (I dare you to go and look and see how long it takes you to get back to whatever you were in the middle of). If you’re planning to make this, or something inspired by this, check out Dan’s cartoonify GitHub repo. And tell us all about it in the comments.

The post Take a photo of yourself as an unreliable cartoon appeared first on Raspberry Pi.

Naturebytes’ weatherproof Pi and camera case

via Raspberry Pi

Naturebytes are making their weatherproof Wildlife Cam Case available as a standalone product for the first time, a welcome addition to the Raspberry Pi ecosystem that should take some of the hassle out of your outdoor builds.

A robin on a bird feeder in a garden with a Naturebytes Wildlife Cam mounted beside it

Weatherproofing digital making projects

People often use Raspberry Pis and Camera Modules for outdoor projects, but weatherproofing your set-up can be tricky. You need to keep water — and tiny creatures — out, but you might well need access for wires and cables, whether for power or sensors; if you’re using a camera, it’ll need something clear and cleanable in front of the lens. You can use sealant, but if you need to adjust anything that you’ve applied it to, you’ll have to remove it and redo it. While we’ve seen a few reasonable options available to buy, the choice has never been what you’d call extensive.

The Naturebytes case

For all these reasons, I was pleased to learn that Naturebytes, the wildlife camera people, are releasing their Wildlife Cam Case as a standalone product for the first time.

Naturebytes case open

The Wildlife Cam Case is ideal for nature camera projects, of course, but it’ll also be useful for anyone who wants to take their Pi outdoors. It has weatherproof lenses that are transparent to visible and IR light, for all your nature observation projects. Its opening is hinged to allow easy access to your hardware, and the case has waterproof access for cables. Inside, there’s a mount for fixing any model of Raspberry Pi and camera, as well as many other components. On top of all that, the case comes with a sturdy nylon strap to make it easy to attach it to a post or a tree.

Naturebytes case additional components

Order yours now!

At the moment, Naturebytes are producing a limited run of the cases. The first batch of 50 are due to be dispatched next week to arrive just in time for the Bank Holiday weekend in the UK, so get them while they’re hot. It’s the perfect thing for recording a timelapse of exactly how quickly the slugs obliterate your vegetable seedlings, and of lots more heartening things that must surely happen in gardens other than mine.

The post Naturebytes’ weatherproof Pi and camera case appeared first on Raspberry Pi.

UK soldiers design Raspberry Pi bomb disposal robot

via Raspberry Pi

Three soldiers in the British Army have used a Raspberry Pi to build an autonomous robot, as part of their Foreman of Signals course.

Meet The Soldiers Revolutionising Bomb Disposal

Three soldiers from Blandford Camp have successfully designed and built an autonomous robot as part of their Foreman of Signals Course at the Dorset Garrison.

Autonomous robots

Forces Radio BFBS carried a story last week about Staff Sergeant Jolley, Sergeant Rana, and Sergeant Paddon, also known as the “Project ROVER” team. As part of their Foreman of Signals training, their task was to design an autonomous robot that can move between two specified points, take a temperature reading, and transmit the information to a remote computer. The team comments that, while semi-autonomous robots have been used as far back as 9/11 for tasks like finding people trapped under rubble, nothing like their robot and on a similar scale currently exists within the British Army.

The ROVER buggy

Their build is named ROVER, which stands for Remote Obstacle aVoiding Environment Robot. It’s a buggy that moves on caterpillar tracks, and it’s tethered; we wonder whether that might be because it doesn’t currently have an on-board power supply. A demo shows the robot moving forward, then changing its path when it encounters an obstacle. The team is using RealVNC‘s remote access software to allow ROVER to send data back to another computer.

Applications for ROVER

Dave Ball, Senior Lecturer in charge of the Foreman of Signals course, comments that the project is “a fantastic opportunity for [the team] to, even only halfway through the course, showcase some of the stuff they’ve learnt and produce something that’s really quite exciting.” The Project ROVER team explains that the possibilities for autonomous robots like this one are extensive: they include mine clearance, bomb disposal, and search-and-rescue campaigns. They point out that existing semi-autonomous hardware is not as easy to program as their build. In contrast, they say, “with the invention of the Raspberry Pi, this has allowed three very inexperienced individuals to program a robot very capable of doing these things.”

We make Raspberry Pi computers because we want building things with technology to be as accessible as possible. So it’s great to see a project like this, made by people who aren’t techy and don’t have a lot of computing experience, but who want to solve a problem and see that the Pi is an affordable and powerful tool that can help.

The post UK soldiers design Raspberry Pi bomb disposal robot appeared first on Raspberry Pi.

Mayank Sinha’s home security project

via Raspberry Pi

Yesterday, I received an email from someone called Mayank Sinha, showing us the Raspberry Pi home security project he’s been working on. He got in touch particularly because, he writes, the Raspberry Pi community has given him “immense support” with his build, and he wanted to dedicate it to the commmunity as thanks.

Mayank’s project is named Asfaleia, a Greek word that means safety, certainty, or security against threats. It’s part of an honourable tradition dating all the way back to 2012: it’s a prototype housed in a polystyrene box, using breadboards and jumper leads and sticky tape. And it’s working! Take a look.

Asfaleia DIY Home Security System

An IOT based home security system. The link to the code: https://github.com/mayanksinha11/Asfaleia

Home security with Asfaleida

Asfaleia has a PIR (passive infrared) motion sensor, an IR break beam sensor, and a gas sensor. All are connected to a Raspberry Pi 3 Model B, the latter two via a NodeMCU board. Mayank currently has them set up in a box that’s divided into compartments to model different rooms in a house.

A shallow box divided into four labelled "rooms", all containing electronic components

All the best prototypes have sticky tape or rubber bands

If the IR sensors detect motion or a broken beam, the webcam takes a photo and emails it to the build’s owner, and the build also calls their phone (I like your ringtone, Mayank). If the gas sensor detects a leak, the system activates an exhaust fan via a small relay board, and again the owner receives a phone call. The build can also authenticate users via face and fingerprint recognition. The software that runs it all is written in Python, and you can see Mayank’s code on GitHub.

Of prototypes and works-in-progess

Reading Mayank’s email made me very happy yesterday. We know that thousands of people in our community give a great deal of time and effort to help others learn and make things, and it is always wonderful to see an example of how that support is helping someone turn their ideas into reality. It’s great, too, to see people sharing works-in-progress, as well as polished projects! After all, the average build is more likely to feature rubber bands and Tupperware boxes than meticulously designed laser-cut parts or expert joinery. Mayank’s YouTube channel shows earlier work on this and another Pi project, and I hope he’ll continue to document his builds.

So here’s to Raspberry Pi projects big, small, beginner, professional, endlessly prototyped, unashamedly bodged, unfinished or fully working, shonky or shiny. Please keep sharing them all!

The post Mayank Sinha’s home security project appeared first on Raspberry Pi.

Augmented-reality projection lamp with Raspberry Pi and Android Things

via Raspberry Pi

If your day has been a little fraught so far, watch this video. It opens with a tableau of methodically laid-out components and then shows them soldered, screwed, and slotted neatly into place. Everything fits perfectly; nothing needs percussive adjustment. Then it shows us glimpses of an AR future just like the one promised in the less dystopian comics and TV programmes of my 1980s childhood. It is all very soothing, and exactly what I needed.

Android Things – Lantern

Transform any surface into mixed-reality using Raspberry Pi, a laser projector, and Android Things. Android Experiments – http://experiments.withgoogle.com/android/lantern Lantern project site – http://nordprojects.co/lantern check below to make your own ↓↓↓ Get the code – https://github.com/nordprojects/lantern Build the lamp – https://www.hackster.io/nord-projects/lantern-9f0c28

Creating augmented reality with projection

We’ve seen plenty of Raspberry Pi IoT builds that are smart devices for the home; they add computing power to things like lights, door locks, or toasters to make these objects interact with humans and with their environment in new ways. Nord ProjectsLantern takes a different approach. In their words, it:

imagines a future where projections are used to present ambient information, and relevant UI within everyday objects. Point it at a clock to show your appointments, or point to speaker to display the currently playing song. Unlike a screen, when Lantern’s projections are no longer needed, they simply fade away.

Lantern is set up so that you can connect your wireless device to it using Google Nearby. This means there’s no need to create an account before you can dive into augmented reality.

Lantern Raspberry Pi powered projector lamp

Your own open-source AR lamp

Nord Projects collaborated on Lantern with Google’s Android Things team. They’ve made it fully open-source, so you can find the code on GitHub and also download their parts list, which includes a Pi, an IKEA lamp, an accelerometer, and a laser projector. Build instructions are at hackster.io and on GitHub.

This is a particularly clear tutorial, very well illustrated with photos and GIFs, and once you’ve sourced and 3D-printed all of the components, you shouldn’t need a whole lot of experience to put everything together successfully. Since everything is open-source, though, if you want to adapt it — for example, if you’d like to source a less costly projector than the snazzy one used here — you can do that too.

components of Lantern Raspberry Pi powered augmented reality projector lamp

The instructions walk you through the mechanical build and the wiring, as well as installing Android Things and Nord Projects’ custom software on the Raspberry Pi. Once you’ve set everything up, an accelerometer connected to the Pi’s GPIO pins lets the lamp know which surface it is pointing at. A companion app on your mobile device lets you choose from the mini apps that work on that surface to select the projection you want.

The designers are making several mini apps available for Lantern, including the charmingly named Space Porthole: this uses Processing and your local longitude and latitude to project onto your ceiling the stars you’d see if you punched a hole through to the sky, if it were night time, and clear weather. Wouldn’t you rather look at that than deal with the ant problem in your kitchen or tackle your GitHub notifications?

What would you like to project onto your living environment? Let us know in the comments!

The post Augmented-reality projection lamp with Raspberry Pi and Android Things appeared first on Raspberry Pi.