Author Archives: James Hobson

Three Thumbs, Way, Way Up!

via hardware – Hackaday

At least one in their lives — or several times a day — everyone has wished they had a third hand to help them with a given task. Adding a mechanical extra arm to one’s outfit is a big step, so it might make sense to smart small, and first add an extra thumb to your hand.

This is not a prosthetic in the traditional sense, but a wearable human augmentation envisioned by [Dani Clode], a master’s student at London’s Royal College of Art. The thumb is 3D-printed out of Ninjaflex and mounted to a printed brace which slides over the hand. One servo rotates the thumb, and a second pulls it closed using a bowden cable system — not unlike that of a bicycle brake. Control of the thumb is achieved by pressure sensors in the wearer’s shoes, linked via Bluetooth to a wristband hosting the servos and the electronics. We already use our hands and feet in conjunction, so why not capitalize on this intuitive link?

The main thrust of this project is to expand human ability and expression: in the same way that a pair of glasses can express individual character while their capacity as a medical device takes a secondary role, [Clode] hopes that her third thumb will have an aesthetic component alongside broadening our capacity as humans. This isn’t to say that traditional prosthetics cannot be works of art in and of themselves.

[Thanks for the tip, Sophi!]


Filed under: hardware, wearable hacks

Hey NASA, Do You Want Your Stuff Back?

via hardware – Hackaday

What would you do if you found hidden away artifacts of aerospace technology from the Apollo era?

You call NASA.

Two hulking computers — likely necessitating the use of a crane to move them — and hundreds of tape reels were discovered in the basement of a former IBM engineer by their heir and a scrap dealer cleaning out the deceased’s home. Labels are scarce, and those that are marked are mostly from the late 1960s through the mid 1970s, including data from the Pioneer 8 to 11 missions, as well as the Helios missions.

Erring on the side of caution, the heir opted to call NASA and attempt to return the tech. The story goes that the late engineer received permission to take the two units and trove of tapes home after they were slated for decommission. Considering their state of disrepair and how dated the technology is, NASA stated they do not do junk removal and recommended their destruction.

One has to guess at what was once on those mysterious tapes — now compromised by mould — but NASA’s archivist’s investigation concluded that there was little data of historical significance stored on them, so fret not.

For a more official trip through NASA’s tech — old and new, check out our tour of their Jet-Propulsion Laboratory, as well as some of their more relatable hacks.

[via Ars Technica]


Filed under: hardware, news

An ExoArm For The Elderly

via hardware – Hackaday

Prosthetic and assistive technologies have come have come a long way in recent years. When there are not only major medical research organizations, but individuals getting on board designing tools to improve the lives of others? That’s something special. Enter a homebrew essay into this field: ExoArm.

Attached to the body via what was available — in this case, the support harness for a gas-powered weed-eater — which distributes the load across the upper body and an Arduino for a brain, ExoArm designer [Kristjan Berce] has since faced roadblocks with muscle sensors meant to enable more instinctive control. So — for now — functionality is limited to a simple up and down motion controlled by two switches. It is worth noting that the down switch is currently mounted in such a way that when the user moves their arm down, the ExoArm follows suit, so there is some natural feel to using the arm in its present iteration.

Developed with the elderly — and others who need a boost to physical strength to live a normal life — in mind, this prototype is able to curl up to 10kg in excess of its own weight. Presently, the only motor is on the elbow joint — granting a basic range of motion — with one adapted to the shoulder joint forthcoming! And, costing only $100, it’s a heck of a start.

We’ve featured some impressive individual forays into hackers helping others, humans and animals alike!


Filed under: Arduino Hacks, hardware

A Magic Light Bulb For All Your Bright Ideas

via hardware – Hackaday

[Uri Shaked]’s lamentation over the breaking of his smart bulb was brief as it was inspiring — now he had a perfectly valid excuse to hack it into a magic light bulb.

The first step was disassembling the bulb and converting it to run on a tiny, 130mAh battery. Inside the bulb’s base, the power supply board, Bluetooth and radio circuits, as well as the LED board didn’t leave much room, but he was able to fit in 3.3V and 12V step-up voltage regulators for the LiPo battery.

[Shaked]’s self-imposed bonus round was to also wedge a charging circuit — which he co-opted from a previous project — into the bulb instead of disassembling it every time it needed more juice. Re-soldering the parts together: easy.  Fitting everything inside a minuscule puzzle-box: hard. Kapton tape proved eminently helpful in preventing shorts in the confined space.

In the interest of safety, [Shaked] also isolated the bulb from its base in case it gets mixed in with some regular light bulbs. He notes that it’s illegal in some countries to mess with bulbs like this unless you are a licensed electrician, since this could easily have a significant failure if plugged(screwed?) into a house’s circuit.

[Shaked] has also managed to tie this project in with a beacon he’s previously built for some cool effects, as well as integrating Bluetooth-based IoT functionality that detects sound, changing the bulb’s colour and brightness appropriately.

If you’re an Apple user, we’ve previously featured one method to get Siri to control a Phillips Hue bulb. Better yet, if one could fuse this with idea with Visible Light Communication, one might be able to control a suite of devices that have a photodiode or other such receivers like a real magic wand — er, bulb.


Filed under: hardware, misc hacks

Helix Display Brings Snake Into Three Dimensions

via hardware – Hackaday

Any time anyone finds a cool way to display in 3D — is there an uncool way? — we’re on board. Instructables user [Gelstronic]’s method involves an array of spinning props to play the game Snake in 3D.

The helix display consists of twelve props, precisely spaced and angled using 3D-printed parts, each with twelve individually addressable LEDs. Four control groups of 36 LEDs are controlled by the P8XBlade2 propeller microcontroller, and the resultant 17280 voxels per rotation are plenty to produce an identifiable image.

In order to power the LEDs, [Gelstronic] used wireless charging coils normally used for cell phones, transferring 10 W of power to the helix array.  A brushless motor keeps things spinning, while an Arduino controls speed and position via an encoder. All the links to the code used are found on the project page, but we have the video of the display in action is after the break.

There are some decidedly easier ways to achieve a volumetric display, as well as some that feel ripped straight from a video game.

[Thanks for the tip, Itay!]


Filed under: hardware, led hacks

Mitosis: Anatomy of a Custom Keyboard

via hardware – Hackaday

Ergonomic. Wireless. Low-latency. Minimalist. Efficient. How far do you go when you design your own open-source keyboard? Checking off these boxes and providing the means for others to do so, Redditor [reverse_bias] presents the Mitosis keyboard, and this thing is cool.

The custom, split– as the namesake implies — mechanical keyboard has 23 keys on each 10 cm x 10 cm half, and, naturally, a custom keymapping for optimal personal use.

Upper and lower PCBs host the keys and electronic circuits respectively, contributing to the sleek finished look. Key caps and mechanical switches were ripped from sacrificial boards: two Waveshare core51822 Bluetooth modules are used for communication, with a third module paired with a Pro Micro make up the receiver.[reverse_bias] spent a fair bit of time attempting to minimize the power consumption of the keyboard so it could be powered by a pair of coin batteries, giving it an estimated six month lifespan of daily use.  These are pinched between the upper and lower boards by little dabs of solder and the slight spring tension of the boards themselves. However, a bit of de-soldering is required to change the battery.

Laser-cut adhesive neoprene adorns the base, proving a comfortable springiness, grip, and protection for the pins as well as cushioning from any debris on the desk. The final product has almost zero flex, has a low enough profile to negate the need for a wrist rest. If you’re interested in building your own, [reverse_bias] has linked all the relevant files here.

Of course, one could always go the opposite way and opt for a more heavyweight option.

[Thanks for the tip, Tyberius Prime!]


Filed under: hardware