Tag Archives: 3d printing

This Arduino-controlled soft robot gets around like an earthworm

via Arduino Blog

After studying the way a worm wiggles, Nicholas Lauer decided to create his own soft robotic version. What he came up with uses an Arduino Uno for control, inflating six 3D-printed segments sequentially to order to generate peristaltic motion for forward movement.

The robotic worm uses a 12V mini diaphragm pump to provide inflation air, while a series of transistors and solenoid valves directly regulate the airflow into the chambers.

The build looks pretty wild in the video below, and per Lauer’s write-up, you’re encouraged to experiment to see what kind of timing produces the most expedient motion. Code, STLs, and a detailed BOM are available on GitHub.

These geodesic RGB LED spheres are absolutely stunning

via Arduino Blog

While this project took him over 100 hours to complete, creator Whity claims that his glowing geodesic domes were worth the effort. As seen below, each dome is able to light up its triangular faces, using via WS2812B programmable LEDs embedded inside. The effect is mesmerizing on video, and has to be even more so in person.

Each device is controlled by an Arduino Nano, along with a MPU-6050 inertial measurement unit. A series of 18650 rechargeable batteries provide power for the numerous lights involved. Magnets hold the two halves of the spheres together for easy access, and the triangles were 3D-printed with hinges to make assembly easier. 

Additional details are available here if you’d like to attempt this challenging build yourself!

Explore the backyard and beyond with this FPV RC vehicle

via Arduino Blog

If you want to build your own first-person view RC rover for some backyard exploration, this design by “MoreMorris” is a great place to start.

The tank-esque vehicle features a 3D-printed frame, including print-in-place tracks, and is able to traverse rough terrain as seen in the video below. Meanwhile, a servo-mounted FPV camera on top allows it to look left and right without swinging the body around.

Inside the vehicle, an Arduino Uno board controls its two motors with the help of an L298N driver module. User interface consists of a Nano-based remote, while communication is handled via a pair of nRF21L01 radio transceivers.

Plenty of additional project info is available in MoreMorris’s write-up.

3D-printable cases for the Raspberry Pi High Quality Camera

via Raspberry Pi

Earlier this year, we released the Raspberry Pi High Quality Camera, a brand-new 12.3 megapixel camera that allows you to use C- and CS-mount lenses with Raspberry Pi boards.

We love it. You love it.

How do we know you love it? Because the internet is now full of really awesome 3D-printable cases and add-ons our community has created in order to use their High Quality Camera out and about…or for Octoprint…or home security…or SPACE PHOTOGRAPHY, WHAT?!

The moon, captured by a Raspberry Pi High Quality Camera. Credit: Greg Annandale

We thought it would be fun to show you some of 3D designs we’ve seen pop up on sites like Thingiverse and MyMiniFactory, so that anyone with access to a 3D printer can build their own camera too!

Adafruit did a thing, obvs

Shout out to our friends at Adafruit for this really neat, retro-looking camera case designed by the Ruiz Brothers. The brown filament used for the casing is so reminiscent of the leather bodies of SLRs from my beloved 1980s childhood that I can’t help but be drawn to it. And, with snap-fit parts throughout, you can modify this case model as you see fit. Not bad. Not bad at all.

Nikon to Raspberry Pi

While the Raspberry Pi High Quality Camera is suitable for C- and CS-mount lenses out of the box, this doesn’t mean you’re limited to only these sizes! There’s a plethora of C- and CS-mount adapters available on the market, and you can also 3D print your own adapter.

Thingiverse user UltiArjan has done exactly that and designed this adapter for using Nikon lenses with the High Quality Camera. Precision is key here to get a snug thread, so you may have to fiddle with your printer settings to get the right fit.

And, for the Canon users out there, here’s Zimbo1’s adapter for Canon EF lenses!

Raspberry Pi Zero minimal adapter

If you’re not interested in a full-body camera case and just need something to attach A to B, this minimal adapter for the Raspberry Pi Zero will be right up your street.

Designer ed7coyne put this model together in order to use Raspberry Pi Zero as a webcam, and according to Cura on my laptop, should only take about 2 hours to print at 0.1 with supports. In fact, since I’ve got Cura open already…

3D print a Raspberry Pi High Quality Camera?!

Not a working one, of course, but if you’re building something around the High Quality Camera and want to make sure everything fits without putting the device in jeopardy, you could always print a replica for prototyping!

Thingiverse user tmomas produced this scale replica of the Raspberry Pi High Quality Camera with the help of reference photos and technical drawings, and a quick search online will uncover similar designs for replicas of other Raspberry Pi products you might want to use while building a prototype

Bonus content alert

We made this video for HackSpace magazine earlier this year, and it’s a really hand resource if you’re new to the 3D printing game.

Also…

…I wasn’t lying when I said I was going to print ed7coyne’s minimal adapter.

The post 3D-printable cases for the Raspberry Pi High Quality Camera appeared first on Raspberry Pi.

New twist on Raspberry Pi experimental resin 3D printer

via Raspberry Pi

Element14’s Clem previously built a giant Raspberry Pi-powered resin-based 3D printer and here, he’s flipped the concept upside down.

The new Raspberry Pi 4 8GB reduces slicing times and makes for a more responsive GUI on this experimental 3D printer. Let’s take a look at what Clem changed and how…

The previous iteration of his build was “huge”, mainly because the only suitable screen Clem had to hand was a big 4K monitor. This new build flips the previous concept upside down by reducing the base size and the amount of resin needed.

Breaking out of the axis

To resize the project effectively, Clem came out of an X,Y axis and into Z, reducing the surface area but still allowing for scaling up, well, upwards! The resized, flipped version of this project also reduces the cost (resin is expensive stuff) and makes the whole thing more portable than a traditional, clunky 3D printer.

Look how slim and portable it is!

How it works

Now for the brains of the thing: nanodlip is free (but not open source) software which Clem ran on a Raspberry Pi 4. Using an 8GB Raspberry Pi will get you faster slicing times, so go big if you can.

A 5V and 12V switch volt power supply sorts out the Nanotec stepper motor. To get the signal from the Raspberry Pi GPIO pins to the stepper driver and to the motor, the pins are configured in nanodlp; Clem has shared his settings if you’d like to copy them (scroll down on this page to find a ‘Resources’ zip file just under the ‘Bill of Materials’ list).

Raspberry Pi working together with the display

For the display, there’s a Midas screen and an official Raspberry Pi 7″ Touchscreen Display, both of which work perfectly with nanodlip.

At 9:15 minutes in to the project video, Clem shows you around Fusion 360 and how he designed, printed, assembled, and tested the build’s engineering.

A bit of Fusion 360

Experimental resin

Now for the fancy, groundbreaking bit: Clem chose very specialised photocentric, high-tensile daylight resin so he can use LEDs with a daylight spectrum. This type of resin also has a lower density, so the liquid does not need to be suspended by surface tension (as in traditional 3D printers), rather it floats because of its own buoyancy. This way, you’ll need less resin to start with, and you’ll waste less too whenever you make a mistake. At 13:30 minutes into the project video, Clem shares the secret of how you achieve an ‘Oversaturated Solution’ in order to get your resin to float.

Now for the science bit…

Materials

It’s not perfect but, if Clem’s happy, we’re happy.

Join the conversation on YouTube if you’ve got an idea that could improve this unique approach to building 3D printers.

The post New twist on Raspberry Pi experimental resin 3D printer appeared first on Raspberry Pi.

Arduino X-ray imaging phantom simulates lung movement

via Arduino Blog

Imaging phantoms are used to evaluate and test medical devices, such as X-ray machinery, where a human subject would be impractical and/or dangerous. In order to simulate the motion and deformation of a lung, Stefan Grimm created an Arduino-powered phantom at a materials cost of around $350 USD.

Much of the project’s structure is printed with dissolvable PVA, used as a form for silicone that mimics tissue and plaster for bone. Movement is controlled via three linear and rotary actuator setups outlined here, and the structure can either be pre-programmed or manipulated in real-time using a USB cable and PC.

You can see a simulation of the setup in the video below, tracking target objects as they move along with cylinders that represent respiratory motion.