Tag Archives: 3d printing

The future of 3D printing with Dr Adrian Bowyer | HackSpace magazine #17

via Raspberry Pi

You might have heard of RepRap. It’s the project that began at the University of Bath in 2005 with the aim of creating a self-replicating, open-source 3D printer. As is the nature of open source, many other projects have spun off from RepRap, including the Prusa i3. Without RepRap, the field of 3D printing would be much smaller, less advanced, and a lot less open.

Adrian was made an MBE in the New Year Honours list, for services to 3D printing.

We drove many miles through wind and rain to meet Dr Adrian Bowyer, co-founder of the RepRap project who now, along with his daughter Sally, runs RepRap Ltd. The two of them are still pushing boundaries, raising standards, and lowering prices, so we sat down to talk about RepRap and where the 3D printing industry is heading.

It may be an obvious question, but why did you start the RepRap project?

Adrian Bowyer: Curiosity. I have always been interested in the idea of self-replicating machines ever since I was a child. When my university acquired some commercial 3D printers, as soon as they arrived I thought, ah, we’ve got a technology here that is sufficiently versatile that it stands a chance of being able to copy itself. Having had that idea, the very next question that occurs to your brain is: will this work? And that was the genesis of the project. I wanted to find out if we could make a machine that could print a significant fraction of its own parts and self-replicate.

It was literally the case that, at the height of development of RepRap in Bath 2008/2009, I was effectively running, in terms of numbers of staff, the biggest research project in any UK university. I wasn’t paying any of them of course, and they were distributed all over the world, but if you counted them up, there were more of them working with me than were working in any other single research project in any other university in the UK.

What are you doing with RepRap at the moment?

AB: We’re looking at distributed processor RepRaps, so instead of having a single CPU, we put a single CPU on each device in the machine, such as the heaters, the motors, and so on. This isn’t a new idea; other people have tried this in the past. From the perspective of Raspberry Pi, that’s interesting because such a machine wouldn’t need real-time response from the processor that’s at the heart of the machine.

If you’ve got a Linux system running on something, it’s not great for real-time control, because of interrupts. Whereas the sort of system we’re working on would have a Raspberry Pi in the middle, with a load of Arduinos around it. You can hand over the hardware timing to the Arduino, which, being dedicated, can be guaranteed to generate a poll every 20 microseconds or whatever it is. Whereas the thing sitting in the middle, doing the control, just has to be able to respond every few milliseconds. That’s something we’re putting together with Raspberry Pis and Arduinos.

Each Arduino is monitoring and controlling one aspect of the printer

One of the reasons that we want to do it is that we’re looking at making larger machines, and also a machine that not only is a 3D printer, but also incorporates a plasma cutter. Now, the thing about a plasma cutter is that it generates an enormous amount of electronic noise. You get lots of interference from it. So the ideal way to send electrical signals around the machine is not using electricity, but optics. So what we would be doing would be setting up a machine with optical communication between each of its component parts and the controller, so that electrical interference isn’t a problem, and, in order to do that [the system] has to be distributed in the way that I’ve just described.

Where, in general, do you think 3D printing is heading?

AB: The analogy I often draw is with washing clothes, which went through three stages: it started off with us washing our own clothes. In the scullery or the kitchen, you’d wash your clothes once a week. And then in Victorian times, as economies of scale kicked in, there would be a town laundry, where you would send your clothes and they’d come back clean. But now we have a robot in the kitchen that can wash our clothes. It’s come back to us, this time automated.

Making stuff in general, it seems to me, is going through that progression, just 100 years later. It started off that, if you needed a gate hinge, you went to the blacksmith in your village. He would make you a gate hinge. Now if you want a gate hinge, you go to the shop and buy one, and it was made halfway around the world. But if we bring some of that back into our cities, it’s like bringing our washing back from the town laundry into our homes. As long as it’s automated: the rule seems to be that if something is automatable so that people don’t have to pay a lot of attention, and it’s low-cost enough, people can take it back to themselves, and economies of scale get reversed.

This ukulele was printed in two parts. It’s playable, and sounds great.

Finally, congratulations on your MBE!

AB: That’s very kind! The certificate is an impressive thing. Signed by Her Majesty the Queen, and by Prince Philip as the person who is in charge of knighthoods and such.

I’m going up in May to Buckingham Palace to have it pinned on my chest, so that’ll be interesting. The commendation says: “Inventor: for services to 3D printing.” Short and to the point.

Read more

The full interview is in HackSpace magazine issue 17, where we also help you develop your Arduino skill, look at an open-source lathe, design a PCB in KiCad, build a polyphonic synthesizer, and much more.

Buy your copy now from the Raspberry Pi Press store, major newsagents in the UK, or Barnes & Noble, Fry’s, or Micro Center in the US. Or, download your free PDF copy from the HackSpace magazine website.

Never miss an issue

Subscribe today and get three issues for just £5 (in the UK — additional postage charges apply elsewhere)!

The post The future of 3D printing with Dr Adrian Bowyer | HackSpace magazine #17 appeared first on Raspberry Pi.

Create shapes over and over with the Dynablock 3D Printer

via Arduino Blog

3D printing, while revolutionary in many aspects, generally means you’re stuck with what you print. Researchers at the University of Colorado Boulder and the University of Tokyo, however, have created a printing system called Dynablock, which attaches specialized magnetic blocks together that can used over and over.

The system uses an array of 24 x 16 motors to push the blocks into position one layer at a time, giving a possible “print” resolution of 384 blocks per layer. An Arduino Uno, along with shift registers and motor drivers are used to directly control the block placement motors, and user interface is handled by a JavaScript-based application.

Dynamic 3D Printing combines the capabilities of 3D printers and shape displays: Like conventional 3D printing, it can generate arbitrary and graspable three-dimensional shapes, while allowing shapes to be rapidly formed and reformed as in a shape display. To demonstrate the idea, we describe the design and implementation of Dynablock, a working prototype of a dynamic 3D printer. Dynablock can form a three-dimensional shape in seconds by assembling 3,000 9 mm blocks, leveraging a 24 x 16 pin-based shape display as a parallel assembler. Dynamic 3D printing is a step toward achieving our long-term vision in which 3D printing becomes an interactive medium, rather than the means for fabrication that it is today. In this paper, we explore possibilities for this vision by illustrating application scenarios that are difficult to achieve with conventional 3D printing or shape display systems.

More info can be found in the project’s research paper here, or check it out in action in the video below:

A waterproof Raspberry Pi?! Five 3D-printable projects to try

via Raspberry Pi

Summer is coming to a close. The evenings grow darker. So pack away your flip flops, hang up your beach towel, and settle in for the colder months with these fun 3D-printable projects to make at home or in your local makerspace.

Fallout 4 desktop terminal

Power Up Props’ replica of the Fallout desktop terminals fits a 3.5″ screen and a Raspberry Pi 3B. Any Fallout fans out there will be pleased to know that you don’t need to raise your Science level to hack into this terminal — you’ll just need access to a 3D printer and these free files from My Mini Factory.

Fallout 4 terminal 3d-printable raspberry pi case

And while you’re waiting for this to print, check out Power Up Props’ wall-mounted terminal!

Fallout 4 – Working Terminal (Raspberry Pi Version) – Power Up Props

Howdy neighbors, grab some fusion cores and put on your power armor because today we’re making a working replica of the wall mounted computer “terminals” from the Fallout series, powered by a Raspberry Pi! Want one of your very own terminals?

Falcon Heavy night light

Remixing DAKINGINDANORF‘s low-poly Arduino-based design, this 3D-printable night light is a replica of the SpaceX Falcon Heavy rocket. The replica uses a Raspberry Pi Zero and a Pimoroni Unicorn pHAT to create a rather lovely rocket launch effect. Perfect for the budding space explorer in your home!

Falcon Heavy night light

I 3D printed a SpaceX Falcon Heavy night light, with some nice effects like it’s actually launching. Useful? Hell no. Cool? Hell yes! Blogpost with files and code: https://www.dennisjanssen.be/tutorials/falcon-heavy-night-light/

You can download the files directly from Dennis Janssen’s website.

Swimming IoT satellite

We’re really excited about this design and already thinking about how we’ll use it for our own projects:

Floating Raspberry Pi case

Using an acrylic Christmas bauble and 3D-printed parts, you can set your Raspberry Pi Zero W free in local bodies of water — ideal for nature watching and citizen science experiments.

Art Deco clock and weather display

Channel your inner Jay Gatsby with this Art Deco-effect clock and weather display.

Art Deco Raspberry Pi Clock

Fitted with a Raspberry Pi Zero W and an Adafruit piTFT display, this build is ideally suited for any late-night cocktail parties you may have planned.

High-altitude rocket holder

Send four Raspberry Pi Zeros and Camera Modules into the skies with this holder design from Thingiverse user randysteck.

Raspberry Pi Zero rocket holder

The 3D-printable holder will keep your boards safe and sound while they simultaneously record photos or video of their airborne adventure.

More more more

What projects did we miss? Share your favourite 3D-printable designs for Raspberry Pis in the comments so we can see more builds from the internet’s very best community!

The post A waterproof Raspberry Pi?! Five 3D-printable projects to try appeared first on Raspberry Pi.

Working model of the Trinity Buoy Wharf Lighthouse

via Raspberry Pi

When Dave shared his Raspberry Pi Zero–powered model of the Trinity Buoy Wharf Lighthouse on Reddit, we fell a little bit in love.

Lame_Dave's Raspberry Pi Trinity Buoy Wharf Lighthouse

Hello from the Trinity Buoy Wharf Lighthouse

Dave was getting married inside London’s only lighthouse, situated at Trinity Buoy Wharf across the water from the O2 Arena.

Lame_Dave's Raspberry Pi Trinity Buoy Wharf Lighthouse

The Trinity Buoy Wharf Lighthouse

The Trinity Buoy Wharf lighthouse sits at the confluence of the River Thames (the big ol’ river running through London) and Bow Creek, a tidal estuary of the River Lea (the river Adele sings about in her song River Lea*!). When the wharf was closed in 1988, the lighthouse was put out of commission.

Dave is wonderful, and so are his lighthouses

On Reddit, Dave goes by the username Lame_Dave, but considering how wonderful and thoughtful his project for his lighthouse wedding is, we hereby rename him Wonderful_Thoughtful_Dave. Don’t put yourself down, Dave. You’re brilliant!

“I knew I wanted to make something involving electronics and 3D printing,” explains Wonderful_Thoughtful_Dave in an imgur post. “So I decided to make working model lighthouses as the table centrepieces.”

Designing and building ten tabletop lighthouses

Dave designed the 3D model in Autodesk 123D, with a plethora of photographs of the lighthouse as reference points. And many hours later, he began 3D printing ten lighthouse shells using his Prusa MK2.5.

With Samsung 18650 batteries and a 18650 shield for power, Dave hooked up Raspberry Pi Zeros to 6×2 LCD displays, LEDs, and stepper motors. With these components, each lighthouse to gives off a rather lovely light while also showing table number and meal status to guests. Neat!

Lame_Dave's Raspberry Pi Trinity Buoy Wharf Lighthouse

“Each lighthouse has a JSON file on the Pi that tells it what messages to display when, so each table is personalised.”

The final result is beautiful and would look at home anywhere from a model town to a toy shop, or indeed the entrance of the Trinity Buoy Wharf Lighthouse itself.

We love how Dave put different maker skills to use here, from 3D design and printing, to constructing and coding. Hopefully, we’ll see more projects from him in the future!

Remaking classic landmarks

Here in the UK, people have a thing for iconic buildings. And at Pi Towers, we adore it when you recreate historic landmarks like this with the help of our humble board.

Why not try creating your own reimagining, such as the Project Arthur ISS tracker, a papercraft and Pi build that pays homage to Arthur, the first satellite dish at the Cornish Goonhilly Earth Satellite Station?

Arthur satellite dish Trinity Buoy Wharf Lighthouse

Or come up with something completely new! We’d love to see, say, a working model of London’s Tower Bridge, or a light-up King’s College Chapel. Whatever landmark makes your day, why not build a scale model using your maker skills and electronics?

 

 

 

*Sadly, we are unable to share the song for copyright issues, so here is the Adele edition of Carpool Karaoke instead.

The post Working model of the Trinity Buoy Wharf Lighthouse appeared first on Raspberry Pi.

Rock, paper, scissors, lizard, Spock, fire, water balloon!

via Raspberry Pi

Use a Raspberry Pi and a Pi Camera Module to build your own machine learning–powered rock paper scissors game!

Rock-Paper-Scissors game using computer vision and machine learning on Raspberry Pi

A Rock-Paper-Scissors game using computer vision and machine learning on the Raspberry Pi. Project GitHub page: https://github.com/DrGFreeman/rps-cv PROJECT ORIGIN: This project results from a challenge my son gave me when I was teaching him the basics of computer programming making a simple text based Rock-Paper-Scissors game in Python.

Virtual rock paper scissors

Here’s why you should always leave comments on our blog: this project from Julien de la Bruère-Terreault instantly had our attention when he shared it on our recent Android Things post.

Julien and his son were building a text-based version of rock paper scissors in Python when his son asked him: “Could you make a rock paper scissors game that uses the camera to detect hand gestures?” Obviously, Julien really had no choice but to accept the challenge.

“The game uses a Raspberry Pi computer and Raspberry Pi Camera Module installed on a 3D-printed support with LED strips to achieve consistent images,” Julien explains in the tutorial for the build. “The pictures taken by the camera are processed and fed to an image classifier that determines whether the gesture corresponds to ‘Rock’, ‘Paper’, or ‘Scissors’ gestures.”

How does it work?

Physically, the build uses a Pi 3 Model B and a Camera Module V2 alongside 3D-printed parts. The parts are all green, since a consistent colour allows easy subtraction of background from the captured images. You can download the files for the setup from Thingiverse.

rock paper scissors raspberry pi

To illustrate how the software works, Julien has created a rather delightful pipeline demonstrating where computer vision and machine learning come in.

rock paper scissors using raspberry pi

The way the software works means the game doesn’t need to be limited to the standard three hand signs. If you wanted to, you could add other signs such as ‘lizard’ and ‘Spock’! Or ‘fire’ and ‘water balloon’. Or any other alterations made to the game in your pop culture favourites.

rock paper scissors lizard spock

Check out Julien’s full tutorial to build your own AI-powered rock paper scissors game here on Julien’s GitHub. Massive kudos to Julien for spending a year learning the skills required to make it happen. And a massive thank you to Julien’s son for inspiring him! This is why it’s great to do coding and digital making with kids — they have the best project ideas!

Sharing is caring

If you’ve built your own project using Raspberry Pi, please share it with us in the comments below, or via social media. As you can tell from today’s blog post, we love to see them and share them with the whole community!

The post Rock, paper, scissors, lizard, Spock, fire, water balloon! appeared first on Raspberry Pi.

Ten awesome 3D-printable Raspberry Pi goodies

via Raspberry Pi

3D printing has become far more accessible for hobbyists, with printer prices now in the hundreds instead of thousands of pounds. Last year, we covered some of the best 3D-printable cases for the Pi, and since then, Raspberry Pi enthusiasts have shared even more cool designs on sites such as MyMiniFactory and Thingiverse!

Here are ten of our recent favourites:

World Cup Sputnik

“With the World Cup now underway, I wanted a Russia-themed football sculpture to hang over the desk,” explains creator Ajax Jones. “What better than a football-styled Sputnik!”

Raspberry Pi 3d-printable World Cup Sputnik

The World Cup Sputnik comes complete with a Raspberry Pi that transmits the original Sputnik ‘beeps’ on an FM frequency, allowing co-workers to tune in for some 1960s nostalgia.

Radios

We see an abundance of musical Raspberry Pi projects online, and love looking out for the ones housed in interesting, unique cases like these:

Raspberry Pi 3d-printable radio Raspberry Pi 3d-printable radio

The MiniZ is a streaming radio based on the Zenith Cube, created by Thingiverse user thisoldgeek.

This is a case for a small, retro radio powered by Logitech Media Server. It uses a Raspberry Pi Zero W and displays a radio dial (tunes via a knob), a clock, and ‘Now Playing’ album art.

For something a little more simple to use, Lukas2040‘s NFC radio for children comes with illustrated, NFC-tagged cards to allow his two-year-old daughter to pick her own music to play.

Gaming

Whether it’s console replicas or tabletop arcade cabinets, the internet is awash with gaming-themed Raspberry Pi projects. Here are a few of our favourites!

The Okama Gamesphere is a fictional game console from South Park. Leodym has taken the rather stylish design and converted it into a Raspberry Pi 3 case.

Okama Gamesphere 3d-printable Raspberry Pi case Okama Gamesphere 3d-printable Raspberry Pi case Okama Gamesphere 3d-printable Raspberry Pi case

Canino‘s Yet Another Mini Arcade is exactly that. We really like how it reminds us of old, imported gaming consoles from our childhoods.

3d-printable Raspberry Pi arcade case

“I really love the design and look of the HP OMEN Accelerator,” writes designer STIG_. “So I decided to draw up a case for the Raspberry Pi 3 Model B.”

OMEN Accelerator 3D-printable Raspberry Pi case OMEN Accelerator 3D-printable Raspberry Pi case OMEN Accelerator 3D-printable Raspberry Pi case

We really love it too, STIG_. Well done.

Ironman, Ironman, does whatever an Ironman can…

atlredninja‘s Ironman Mark 7 torso housing for the Google AIY Projects Voice Kit is pretty sweet!

Iron man AIY case Neopixel Rings Adafruit

Iron man AIY case Neopixel Rings Adafruit 16 and 12 LEDS. 3d files and instructions for assembly here: https://www.thingiverse.com/thing:2950452 This is just a test to make sure the LEDs are working and the A.I. is working correctly. This took me about 3 weeks to design, print, and assemble.

This model is atlredninja‘s second version of an Ironman-themed AIY project: the first fits within a replica helmet. We’re looking forward to a possible third edition with legs. And a fourth that flies.

We can dream, can’t we?

Speaking of Marvel

How often have you looked at Thor’s hammer and thought to yourself “If only it had a Raspberry Pi inside…”

Raspberry Pi Thor case

This case from furnibird is one of several pop culture–themed Raspberry Pi cases that the designer has created. Be sure to check out the others, including a Deathstar and Pac-Man.

3D-printable bird box

chickey‘s 3D-printable Raspberry Pi Bird Box squeezes a Raspberry Pi Zero W and a camera into the lid, turning this simple nesting box into a live-streaming nature cam.

3D-printed raspberry pi bird box 3D-printed raspberry pi bird box 3D-printed raspberry pi bird box

The Raspberry Pi uploads images directly to a webpage, allowing you to check in on the feathered occupants from any computer or mobile device. Nifty.

Print a Raspberry Pi!

Using a 3D-printed Raspberry Pi in place of the real deal while you’re prototyping in the workshop may save you from accidentally damaging your tiny computer.

3D-printed Raspberry Pi 3 3D-printed Raspberry Pi 3 3D-printed Raspberry Pi 3

AlwaysComputing designed this Raspberry Pi Voxel Model using MagicaVoxel, stating “I like to tinker and play with the program MagicaVoxel. I find it therapeutic!”

What else?

What Raspberry Pi–themed 3D prints have you seen lately? Share your favourites with us in the comments, or on Twitter and Facebook.

The post Ten awesome 3D-printable Raspberry Pi goodies appeared first on Raspberry Pi.