Tag Archives: app note

App note: Sub-1 V current sensing with the TS1001, A 0.8 V, 0.6 µA OP-AMP

via Dangerous Prototypes


Another TS1001 op-amp application from Silicon Labs on sensing nano currents. Link here (PDF)

Current-sense amplifiers can monitor battery or solar cell currents, and are useful to estimate power capacity and remaining life. However, if the battery or solar source is a single cell, it’s difficult to find a low voltage solution that works below 1V and draws just microamps. A new class of nanopower analog ICs, namely the TS1001 0.8 V/0.6 µA op amp, makes a sub-1 V supply current sense amplifier possible. This discrete circuit operates from as low as 0.8 V and draws 860 nA at no load while providing a 0–500 mV output for measured currents of 0–100 mA, though the scale can be adjusted by changing the values of a few resistors. With its extremely low power, the circuit can simply remain “always on,” providing a continuously monitored, averaged indication of current which can subsequently be read periodically by a microcontroller, without causing too much current drain in the battery.

App note: A microwatt charge pump boosts 1 V to 1.8 V at 90% efficiency, providing “Always On” standby power for microcontrollers

via Dangerous Prototypes


Interesting app note from Silicon Labs on high efficiency charge pump utilizing their nanopower TS1001 op amp. Link here (PDF)

Boosting the output voltage of common alkaline button-cells to at least 1.8 V needed by microcontrollers provides an “always on” standby power source sufficient for low-power oscillator interrupt/sleep state operation. Two ultralow power op amps are used in a charge pump configuration to double an input voltage, creating an output voltage of approximately 2x the input voltage. Output currents up to 100 µA are available at 90% efficiency; even load currents as low as 10 µA achieve 80% efficiency, beating commercially available charge pump ICs and inductorbased boost regulators.

App note: High-frequency automotive power supplies

via Dangerous Prototypes


Switching power supply used in automotive electronics app note from Maxim Integrated. Link here (PDF)

The combination of high switching frequency and high-voltage capability is difficult to achieve in IC design. You can, however, design an automotive power supply that operates with high frequency if you protect it from temporary high-voltage conditions. High-frequency operation is becoming important as more and more electronic functions are integrated into the modern automobile. This article discusses several ways to protect low-voltage electronic circuits from the harsh effects of the automotive electrical environment. Also included are the results of laboratory tests for noise immunity.

App note: Fan speed control is cool!

via Dangerous Prototypes


App note from Maxim Integrated about their MAX6650 and MAX6651 fan controllers chip. Link here (PDF)

Temperature-based fan control is a necessity in a growing number of systems, both to reduce system noise and to improve fan reliability. When fan control is augmented by fan-speed monitoring, a speed-control loop can be implemented that is independent of manufacturing variances and wear on the fan. In addition, a fan that is about to fail can be identified so that it can be replaced before it fails.

App note: Current sharing in parallel diodes

via Dangerous Prototypes


Application note from STMicroelectronics on the performance of each diode in a parallel diode connection and how the forward voltage dispersion can have a great impact over thermal effect on the current imbalance. Link here (PDF)

The use of diodes in parallel is commonly found in power electronic design. An important consideration for this practice is the current sharing between diodes due to the difference of electrical characteristics. This application note highlights the cause of the behavior of several diodes are connected in parallel. Some recommendations will be given to help the designer to produce a safe design. An electro-thermal model is described which simulates the current and junction temperature of each diode for given application conditions. This tool is illustrated using an example.

App note: Hot plug insertion startup time delay for eFuse

via Dangerous Prototypes


App note from ON semiconductors about time delay on start up in conjunction with eFuse to compensate voltage spikes that can falsely trigger them. Link here (PDF)

The eFuse protection devices are used for limiting the system load current in the event of an overload or a short circuit. Many applications employ ON Semiconductor eFuses at the power input stage of the system between the main power input connector and DC−DC converters or power regulators. Such applications often tend to experience a voltage spikes and transients during a hot-plug events, especially when the long cables are used at the power input.

Although ON Semiconductor eFuses are extremely immune to voltage transients and eFuses with the Overvoltage clamp feature provide a fast response when limiting the output voltage during transients, sometimes various applications require a time delay between the hot-plug input voltage application and enabling of the eFuse in order for the input voltage to be stabilized before turning on the eFuse.