Tag Archives: CNC

DIY Desktop CNC with an Arduino

via Dangerous Prototypes

pic-CNC Metal-600

Bob Davis has been working on rebuilding his DIY CNC machine:

I have been busy rebuilding my DIY CNC machine. It will be all metal when I get done. It will also include a USB interface, likely an Arduino. None of my computers have a parallel port these days. So something has to be done to resolve that issue.
This first picture is the new metal parts all drilled and ready for assembly. Well maybe ready to be filed so they can be assembled…..

More details at Bob Davis’ blog.

Check out the videos after the break.

FarmBot, the open-source CNC farming robot

via Raspberry Pi

What do you imagine the future of farming to look like? The FarmBot team, located along the California coast in San Luis Obispo, is exploring just that. The team has set out to create humanity’s first open-source CNC farming machine to put the power of polycrop farming into the smallest of spaces.

No Title

No Description

The FarmBot structure fixes directly on top of any standard raised planter box. You can think of it like a 3D printer, but instead of extruding plastic, the tool head deposits seeds, delivers water and rids the box of weeds, all by moving across a gantry. Powered by a Raspberry Pi 3, an Arduino Mega and a motor control shield, the FarmBot brings agricultural automation within the reach of the committed hobbyist.

FarmBot Electronics

FarmBot’s interchangeable tooling set is impressive and has been carefully designed so that you may print tools with any hobbyist-level 3D printer.

The universal tool mount features 12 electrical connections, three liquid/gas lines and magnetic coupling. Ready-to-print attachment tools include the seed injection mount, the water nozzle specially designed for efficient watering, and the weed suppression tool which detects and destroys weeds at the root. FarmBot has documented detailed technical specifications of the universal tool mount, to encourage community members to design additional custom mounts that are specific to their particular farming needs.

Check out the tech specs of the tooling attachments for further nerding out!

FarmBot’s drag-and-drop web-based platform allows you to design and build your planter box farm easily. No coding is required; in fact, it has an almost game-like interface. Once your design is complete, the sequence builder and scheduler will help to allocate appropriate care to each plant.


It’s evident from looking at the design structure, documentation, CAD files, and detailed BOM that the creators of the FarmBot took to heart the idea of open source. By selecting off-the-shelf products and tools, they ensured this system is as accessible as possible. I’m really happy to see the Raspberry Pi 3 at the heart of FarmBot and I can’t wait to see how this community grows.

If you’re someone who’s serious about getting a good crop return from your small space, and you’re as mesmerized by FarmBot as I am, there’s still time to place a pre-order to receive one of the first batches ready to ship in February!

The post FarmBot, the open-source CNC farming robot appeared first on Raspberry Pi.

A CNC pickup winding machine built on an ATmega8

via Dangerous Prototypes


Davide Gironi blogged about his DIY ATmega based CNC pickup winding machine:

A pickup winding machine it is used to wind a guitar pickup.
You can find my previous ATmega manual pickup winding machine here
This project is a manual / CNC pickup winding machine, built on top of an ATmega8 microcontroller.

More details at Davide Gironi’s blog.

Check out the video after the break.

Home-made CNC milling machine

via Raspberry Pi

For the uninitiated, a CNC milling machine is basically the opposite of a 3D printer. With a 3D printer, you’re adding medium from a nozzle to a blank space to create an object. A CNC milling machine starts with a chunk of medium and removes parts of it to create an object, drilling out parts of the medium with great precision while moving its spindle on more than one axis.

CNC milling machines (the CNC means Computer Numeric Control) are really expensive.

Screengrab from eBay today

Screengrab from eBay today

So Colin May did what any thinking engineer would do to bring the price down. He built his own, using a Raspberry Pi for its brains.

CNC machine

Colin says:

My friend and I thought about building a CNC Machine for a while. But we didn’t want it to be just an ordinary CNC Machine. We wanted to make a very unique machine that could have very unique attributes. We set out to make a CNC Machine that could do different types of Machining. For example, routing, laser engraving, 3D printing, drag knife, etc. We took about a few months to design the basics of the machine. For example, what kind of linear motion we would have for each axis, what kind of material we would use for it, what kind of style to make it, etc. We chose our build area to be 24″ X 24″ X 7″. After those few months of finalizing everything, we took our first step into physically making the machine. Note: This is made for the average consumer, for home use, and for someone who doesn’t have the money to invest in a $1000 CNC router or 3D printer.

Colin’s machine is still a work in progress, but it’s showing great promise, and we’re very interested to see where he takes it next. Here’s some prototype output:

chillipepper logo

First test of the machine

test output

Second test

And here’s some video. (Turn the sound down if you’ve got a dentist phobia.)

Raspberry Pi CNC Machine Test Pt: 2

Uploaded by Colin may on 2016-04-24.

Colin is intending to add extra functionality: 3D print capability, and some other machine tools – to the setup. You can follow his build and replicate it over at Instructables. Thanks Colin – we’re looking forward to seeing more!


The post Home-made CNC milling machine appeared first on Raspberry Pi.

Brushed DC Servo Drive

via hardware – Hackaday

Brushless DC motors, and their associated drive electronics, tend to be expensive and complicated. [Ottoragam] was looking for a cheaper alternative and built this Brushed DC motor servo controller and the results look pretty promising. Check out the video after the break.

He needed a low cost, closed loop drive for his home-brew CNC. The servo drive is able to supply a brushed DC motor with up to 7 A continuous current at up to 36 V which works out to about 250 W or 1/3 HP. It does closed loop control with feedback from a quadrature encoder. The drive accepts simple STEP and DIRECTION signals making it easy to interface with micro controllers and use it as a replacement for stepper motors in positioning applications. All of the control is handled by an ATmega328P. It takes the input signals and encoder data, does PID control, and drives the motor via the DRV8701 full bridge MOSFET driver. There’s also some error detection for motor over-current and driver under-voltage. Four IRFH7545 MOSFETs in H-bridge configuration form the output power stage.

This is still work in progress, and [Ottoragam] has a few features pending in his wish list. The important ones include adding a serial interface to make it easy to adjust the PID parameters and creating a GUI to make the adjustment easier. The project is Open Source and all source files available at his Github repository. The board is mostly surface mount, but the passives are all 0805, so it ought to be easy to assemble. The QFN footprint for the micro controller could be the only tricky one. [Ottoragam] would love to have some beta testers for his boards, and maybe some helpful comments to improve his design.

Filed under: cnc hacks, hardware