Tag Archives: DIY

DIY 18650 Powerwall with onboard BMS

via Dangerous Prototypes

A DIY 18650 Powerwall with onboard BMS @ openhardware.co.za

While I cannot afford a Tesla PowerWall, I’ve spent some time drawing up a PCB to house 7x 18650 cells in series. Each board has onboard Battery Management:
*Overvoltage Protection (per cell)
*Undervoltage Protection (per cell)
*Balance Charging
*Overcurrent Protection
*Main pack Fuse

The design files are available on GitHub.

Raspberry Pi Controlled DC Load

via Dangerous Prototypes

Dr. Scott M. Baker has published a new build:

In this video I build a DC Load that’s controlled by a raspberry pi. I’ve built dc loads before, but this time I decided to up the goal to supporting 100w (it actually handled 200w) using three mosfets instead of one. I drive it with a DAC and read back the actual state using an ADC. The CPU board is a raspberry pi, and I have a VFD, encoder, and some buttons for control. It also has a web UI.

Project info at smbaker.com.

Check out the video after the break.

Simple DIY active load

via Dangerous Prototypes

Charles Ouweland designed and built his own simple DIY active load, that is available on Github:

At first I was messing about with some big resistors but then I decided it would be nice to have an “active load” that you can set to a particular current. You can buy these things for quite some money but I decided to design and build myself a simple one using components and tools I have lying around. I decided to go analog, no digital stuff this time.

See the full post on Charles Ouweland’s blog.

PoE-Powered VFD tube clock

via Dangerous Prototypes

Glen Akins’ PoE-powered vintage VFD tube clock:

This is a vintage VFD tube clock that uses Ethernet for both power and data. The power is provided using 802.3at PoE+ and a Molex PD Jack that contains both integrated magnetics and a PoE Type 2 PD controller. The IP stack runs on a Microchip PIC18F67J60 microcontroller that has an integrated Ethernet MAC and PHY. The IP stack includes DHCP, DNS, NTP, and LLDP functionality.

Project info at bikerglen.com.

Check out the video after the break.

Ionization chamber

via Dangerous Prototypes

Robert Gawron has posted an update on his Ionization chamber project we covered previously:

Ionization chamber is a device to measure radioactivity level. When air’s atoms are hit by radioactive particles, an ion-pair is produced. Ions has electric charge, if they are in electric field create by positive and negative electrodes, negative ions will move to positive electrode and positive will move to negative electrode. They will try to “meet each other” thus creating a current. This current can be measured. The current is proportional to amount of ion-pairs. Amount of ion-pairs is proportional to radioactivity level.

More details on Gawron’s blog.