Tag Archives: DIY

SI5351 VFO project

via Dangerous Prototypes


Dave Richards (a.k.a. AA7EE) has a nice write-up about building another Si5351 VFO project:

To many, this will be just another Si5351 VFO project, with nothing to distinguish it from the others. In fact, that’s exactly what it is. The “how to” of connecting an Arduino board to an Si5351 board, wiring up a display, and loading the firmware, is straightforward, and well established. To me though, it was a complete mystery.

See the full post on his blog here.

Rombus pinball – a LattePanda mini pinball machine

via Dangerous Prototypes


Matt Brailsford (aka Circuitbeard) has a nice write-up about building his mini pinball machine with a lattepanda core running dual monitors:

I generally start my projects by thinking about the hardware that I’m going to want to use as I’ll need to know sizes when it comes to the design phase. My first thought was to go with a Rasberry Pi as it’s what I’m familiar with and it’s what I’ve used for my other arcades, but after looking online, there really didn’t seem to be any good options for pinball emulation on Linux at all. It all seemed to be windows based. Thankfully I remembered reading about a single board Windows computer called a LattePanda so I thought why not give that a go and so this was the approach I ended up taking.

Build log at Circuitbeard blog and the GitHub repository here.

Check out the video after the break.

Using DC motors to power computers

via Dangerous Prototypes


Electric generator experiment from HomoFaciens:

The generators I am using are in fact geared DC motors, left over from a project with my sponsor RS Components. The modern abacuses being powered during my experiments are a Raspberry Pi Model, a SIMATIC IOT2020 and an Arduino Uno. A 2×16 characters LCD is used to display results. Two geared DC motors are on my board with the test setup

More info at HomoFaciens.de.

Check out the video after the break.

Stand-alone simulated analog meter

via Dangerous Prototypes


DuWayne S blogged about his stand alone simulated analog meter project:

Thinking about what values I would like to display, I came up with three basic items.  A S-meter when in receive, and a power output display when in transmit.  In transmit, I would also like to have the capability of measuring VSWR.  Thinking about the switching functions required for this I will need one control line that monitors  transmit/receive, this can come from the PTT or key line in the transceiver.  Then  I use a second control line to select either power or VSWR when the T/R line is in transmit.  Another control line can do the same for the S-meter or some other display when in receive.  Since this is based on a VU meter, I will use that for the secondary function in receive.  Now looking at the signal lines I need to measure, they are the AGC line for S-meter, audio signal for VU meter.  And in transmit, the forward and reverse power levels will take care of power and a computed VSWR reading.

See the full post at DuWayne’s Place blog.

Attiny wearable

via Dangerous Prototypes


Attiny wearable project from Facelesstech:

It’s a foundation for a wearable platform. It’s a Nato watch strap threaded through a PCB with a coin cell battery holder between the PCB and the strap. I’m using a Attiny85 this time around but could be used for most chips/dev boards. This is a proof of concept to iron out any problems I’ve overlooked.

Project info at Facelesstech’s blog and the GitHub repository here.

Check out the video after the break.