Tag Archives: hackspace

Make your own NFC data cufflinks

via Raspberry Pi

In this project, we’ll make a pair of NFC data cufflinks, ideal for storing a website URL, a password, or a secret message. This project is perfect for a sartorial spy who loves dry Martinis, and anyone who can’t remember their WiFi password.

NFC technology

NFC stands for near-field communication, and is a protocol that allows two devices to communicate wirelessly when they are physically near each other. An evolution of RFID, NFC is becoming increasingly popular in consumer technology, and is already commonly used in contactless payment systems and identification badges. NFC wristbands are also being used to create enhanced experiences for visitors at theme parks and other venues.

The rise of NFC hasn’t bypassed hobbyists and tinkerers, and companies like Pimoroni and Adafruit sell components that make it relatively easy to add NFC functionality to your projects. Here, we’ll make use of tiny NFC tags that can be read and written to by a smartphone or external NFC reader. The tags can be read through a non-metal barrier, like plastic, so we’ll embed the tag in resin to make an elegant cabochon for our cufflink. When complete, holding the cufflink to your smartphone or NFC reader will let you read or write data to the chip inside.

Micro NFC/RFID transponders

For this project we used the smallest NFC tags we could find, micro NFC/RFID transponders from Adafruit (product number 2800). These 15.6mm x 6mm flexible tags are formatted with the now standard NDEF format, and will work as-is with newer phones and most NFC readers. If you happen to pick up older Mifare Classic formatted tags, they may need to be reformatted as NDEF to work with your reader/writer. Reformatting isn’t a function of most NFC read/write apps, but it can be done with Adafruit’s PN532 NFC/RFID controller breakout board or shield.

If this is your first time working with resin epoxy, get ready for a new, fun kind of mess! Resin epoxy comes in two parts that must be mixed together in equal proportions before use. Once mixed, the resin will be workable for a short period of time before entering the curing phase and hardening completely. Figuring out exactly how much resin to mix up is definitely an art. There are even some online tools available to help calculate this. For a small project like this, just make sure you mix up a bit more than you think you’ll need.

You don’t want to run out during the pour and have to quickly mix up more at the last minute. If you’re tinting your resin, you definitely want to pour all of your pieces from the same mix, as it’s almost impossible to match the colour of one batch of resin to another.

All of this means you’ll undoubtedly end up with more than just two cabochons for one pair of cufflinks, and if you’re going to make a mess anyway, why not go big? Pick up a few extra NFC tags and plan to pour some other pieces, like pendants or key chain fobs. These make great holiday or birthday gifts that are both technologically advanced and crafty at the same time!

Resin-cast jewellery has been made for decades and there are loads of options for resin moulds available at craft stores and online. The best moulds for resin are made of silicone. Flexible silicone moulds make it easy to remove the hardened pieces, and produce ultra-shiny surfaces. Cufflink blanks, ring blanks, and pendant bails can also be purchased at jewellery supply stores. Refer to your moulds when choosing cufflink and ring blanks, to make sure that the blanks will work with the size of cabochon you’ve chosen to cast, and vice versa.

Licence to spill

Start by gathering your materials and setting up your workspace for working with resin. There will be a lot of stirring, pouring, and drips, and things are likely to get messy! Cover your work surface with paper and keep some paper towels nearby. Read and heed the safety warnings on your resin and hardener. Although some resins are considered non-toxic when used as directed, it’s always a good idea to work in a well-ventilated area and wear nitrile gloves to keep the resin off of your skin while working.

Once the two-part resin is mixed together, you will have a limited amount of time to pour the resin before it hardens, so planning and timing is key. Check the ‘pot life’ indicated on your resin; this is the amount of working time you’ll have after mixing before the resin begins to harden. Our resin had a pot life of 30 minutes. It can be helpful to set up a timer so you can keep track of time while you work.

If you have multiple moulds, decide which ones you will use before mixing, and make sure your NFC tags will fit into the shapes you plan to use. If you are making matching cufflinks, remember that you’ll need two identical shapes. Our tiny 15.6mm tags fit perfectly into 16mm cabochons. Remember that you will mix more resin than you need for just two cufflink cabochons, so it’s good to have extra moulds in front of you to pour into.

Prepare the NFC tags

Unwrap the NFC tags and make sure they are clean and ready to be embedded in the resin. For a light-up effect, you may want to combine a data tag with an LED tag, like we did in one of our extra pieces. The back of the NFC LED nail sticker is adhesive, so it was easy to stick it directly to the larger data tag.

Measure, mix, and pour

We mixed up about 6oz (170g) of resin, then tinted it green for a tech-emerald look. This was plenty for two cabochons and three to four extra shapes. Follow the manufacturer’s instructions to mix up your resin. Generally, it’s a 1:1 ratio by volume. A good method for this is to pour each part into matching containers, up to the same measuring mark. Then, pour both into a third cup and stir. Stir slowly, but thoroughly, for at least two or three minutes, making sure to scrape the sides of your mixing cup often. If the resin is not completely and evenly mixed, it will not cure properly. If tinting your resin, add the tint to your mixed resin one drop at a time, slowly deepening the colour to your preference.

Once your resin is mixed and tinted, you’ll notice lots of tiny bubbles that have been incorporated while you were stirring. Let the mixture rest for a few minutes so the bubbles can float to the top, then use a stick to move the bubbles to the side of your container and pop them.

When you’ve removed as many bubbles as possible, it’s time to pour! Place your moulds on a level surface where they’ll be able to sit undisturbed for the amount of time required to cure (check the manufacturer’s instructions; ours specified 24 hours curing time). Pour the resin in a thin stream into the deepest point of your mould, and let it slowly rise to just below the top lip of your mould. Don’t overfill the mould, or the resin will bow and have a convex bottom when you remove it from the mould. Pouring the resin in a thin stream can help pop larger bubbles that are still in the mix.

Embed the NFC tag

With the resin in your mould, you can slide the NFC tag into place. Using tweezers, dip the tag into your unpoured resin to coat it first – this will help the resin in your mould accept the tag without adding too many bubbles. Then, gently slide the tag into the mould and centre it in the resin. It will want to slowly sink to the bottom of the mould, and ideally it stays centred on the way down. You may need to wiggle it back into place with your tweezers or a thin stick, but try not to introduce any new bubbles.

After your resin is poured and the NFC tags are in place, let the resin sit in the moulds for about ten minutes. This is enough time for most of the bubbles to rise to the top surface. Then, spray a fine mist of isopropyl alcohol over the resin to pop the bubbles. This step is optional, but we noticed that it really helped achieve clearer results.

Repeat this process for all the moulds you want to pour and add NFC tags to. Check them after a few minutes to make sure your tag hasn’t slid out mof place, and remember to keep an eye on your pot life timer. Finish all your fiddling and bubble popping before the resin starts to harden. Then, leave your resin to cure for the amount of time specified in your resin’s instructions.

Demould your resin pieces

When the resin has completely hardened, it’s time for mthe exciting part: removing the cured resin from the moulds. If using silicone moulds, your piece should release from the mould without much fuss. Gently flex the silicone to let air seep between the hardened resin mand the wall of the mould. Then you should be able to carefully pull the resin piece out of the mould.

Take a moment to admire your shiny cabochons! If you discover that you’ve over-poured your moulds, or the resin has crept up the sides of the mould, making a curved back, don’t worry. Resin can be wet-sanded; just be sure to keep both the sandpaper and the piece underwater while sanding, and wear a mask to keep from inhaling resin particles.

Make the cufflinks

Use glue to affix the flat-backed cabochons to the cufflink blanks. We used E6000, which is an industrial-strength adhesive that works great on plastics. Again, be sure to work in a well-ventilated area, and wear a respirator while working with E6000.

Apply the glue to the cufflink blank and hold the cabochon in place while the glue sets. Make two, and you’re done! You could also glue the cabochons to ring blanks to make NFC data rings. For pendants, you can use jewellery findings like bails and jump rings to make necklaces or key-chain fobs.

Program the NFC tag

Now that you’ve made your NFC cufflinks, you can load them with data like a website, a password, or a secret message. There are a few methods for doing this. If you have an NFC-capable smartphone, such as an Android phone, you won’t need any additional hardware. You can download a free app like NFC Tools to write and read data on your cufflink. NFC Tasks, another free app, lets you create automatic actions for your phone to perform when the NFC tag is read.

If you have an iPhone, (at the time of publishing of this article) you cannot write directly to NFC tags from your phone. But don’t worry! You can still join the NFC fun by purchasing a USB NFC reader/writer. You’ll be able to read and write to NFC tags with your computer using the NFC Tools desktop app. Your author purchased the NFC reader/writer shown here for about $35 on Amazon.com. You can still use NFC Tools on your iPhone to read tags, and the latest version of iOS, 12.1, supports background NFC tag reading. Some basic actions, like opening a URL in a browser, can now be performed right from the home screen or lock screen – pretty cool!

For a more custom hardware/software approach, try Adafruit’s PN532 NFC/RFID controller breakout board, which lets you add NFC functionality to Raspberry Pi or Arduino projects. It takes some soldering and programming to set up, but this breakout gives you lower-level control of the NFC tag, and is supported by an Adafruit NFC Arduino library. The library includes handy example code for reading and writing to tags, and reformatting Mifare Classic tags with the NDEF format.

Sport your new cufflinks at your next dressy event, and you’ll be both covert and classy! Or, gift these to your favourite snappy dresser, loaded with a secret message for their eyes only. Heading to a conference? Instead of handing out a business card to connect with someone, hold your wrist over their smartphone to bring up your webpage. It’s not magic, it’s technology!

More wearable tech projects

You can find more tutorials like this in Wearable Tech Projects by Sophy Wong, a HackSpace magazine publication. Wearable Tech Projects is on sale now from the Raspberry Pi Press online store, and it’s available as part of the Raspberry Pi Store Black Friday sale this weekend.

The post Make your own NFC data cufflinks appeared first on Raspberry Pi.

Get started with… Arduino?

via Raspberry Pi

Yes, you read that title right, and no, you haven’t accidentally stumbled upon the Arduino Foundation’s website. Today, we’re pleased to announce a new addition to the Raspberry Pi Press family: Get Started with Arduino, a complete how-to guide to help you get hands on with the other pocket-sized board.

But why?

Why not? Our mission is to put the power of computing and digital making into the hands of people all over the world. Whether you’re using a Raspberry Pi, an Arduino, or any other piece of digital making kit, if you’re creating with tech, we’re happy. And Raspberry Pi and Arduino make wonderful project partners for all kinds of build.

What’s in the book?

Get Started with Arduino is packed full of how-tos and project tutorials to help you get better acquainted with the little blue microcontroller. Whether you’re brand new to digital making, a die-hard Raspberry Pi fan looking to expand your maker skillset, or simply a bit of a bookworm, Get Started with Arduino is a super addition to your bookshelves.

Aren’t Raspberry Pi and Arduino the same kind of thing?

Arduino is a microcontroller, while Raspberry Pi is a full computer. Microcontrollers don’t usually run a mainstream operating system, but they’re extremely power-efficient, so they can be great for projects that can’t stay plugged into the mains. You need to use a separate computer to set up your Arduino, but you can do everything on a Raspberry Pi itself… including setting up an Arduino. As we said, the two work really well together in some projects: for example, you might build a robot where the Raspberry Pi handles intensive processing tasks and provides you with a friendly environment for developing your code, while the Arduino handles precise real-time control of the motors.

Buy Get Started with Arduino today

Get Started with Arduino is out now! It’s available from the Raspberry Pi Press website with free international shipping, from the Raspberry Pi Store in Cambridge, and from WHSmith in the UK; it’ll reach Barnes & Noble stores in the US in a week or so.

Also out today…

HackSpace magazine issue #25 is also out today, available from the Raspberry Pi Press website, the Raspberry Pi Store in Cambridge, and every newsagent that’s worth its salt.

And, if that’s not enough, Wireframe magazine issue 27 is also out today, and it too is available from Raspberry Pi Press, the Raspberry Pi Store, and newsagents across the UK.

But wait, there’s more!

In case you missed it, on Monday we released Retro Gaming with Raspberry Pi, your one-stop guide to creating and playing classic retro games on your Raspberry Pi.

Did someone say free?

For getting this far in today’s blog, here’s your reward: Get Started with Arduino, HackSpace magazine, Wireframe magazine and Retro Gaming with Raspberry Pi are all available as free PDF downloads. However, when you buy our publications, you’re supporting the work of the Raspberry Pi Foundation to bring computing to everyone, as well as the continued production of even more great magazines and special edition books. So, you know what to do.

The post Get started with… Arduino? appeared first on Raspberry Pi.

Listen to World War II radio recordings with a Raspberry Pi Zero

via Raspberry Pi

With the 50th anniversary of the D-Day landings very much in the news this year, Adam Clark found himself interested in all things relating to that era. So it wasn’t long before he found himself on the Internet Archive listening to some of the amazing recordings of radio broadcasts from that time. In this month’s HackSpace magazine, Adam details how he built his WW2 radio-broadcast time machine using a Raspberry Pi Zero W, and provides you with the code to build your own.

As good as the recordings on the Internet Archive were, it felt as if something was missing by listening to them on a modern laptop, so I wanted something to play them back on that was more evocative of that time, and would perhaps capture the feeling of listening to them on a radio set.

I also wanted to make the collection portable and to make the interface for selecting and playing the tracks as easy as possible – this wasn’t going to be screen-based!

Another important consideration was to house the project in something that would not look out of place in the living room, and not to give away the fact that it was being powered by modern tech.

So I came up with the idea of using an original radio as the project case, and to use as many of the original knobs and dials as possible. I also had the idea to repurpose the frequency dial to select individual years of the war and to play broadcasts from whichever year was selected.

Of course, the Raspberry Pi was immediately the first option to run all this, and ideally, I wanted to use a Raspberry Pi Zero to keep the costs down and perhaps to allow expansion in the future outside of being a standalone playback device.

Right off the bat, I knew that I would have a couple of obstacles to overcome as the Raspberry Pi Zero doesn’t have an easy way to play audio out, and I also wanted to have analogue inputs for the controls. So the first thing was to get some audio playing to see if this was possible.

Audio playback

The first obstacle was to find a satisfactory way to playback audio. In the past, I have had some success using PWM pins, but this needs a low-pass filter as well as an amplifier, and the quality of audio was never as good as I’d hoped for.

The other alternative is to use one of the many HATs available, but these come at a price as they are normally aimed at more serious quality of audio. I wanted to keep the cost down, so these were excluded as an option. The other option was to use a mono I2S 3W amplifier breakout board – MAX98357A from Adafruit – which is extremely simple to use.

As the BBC didn’t start broadcasting stereo commercially until the late 1950s, this was also very apt for the radio (which only has one speaker).
Connecting up this board is very easy – it just requires three GPIO pins, power, and the speaker. For this, I just soldered some female jumper leads to the breakout board and connected them to the header pins of the Raspberry Pi Zero. There are detailed instructions on the Adafruit website for this which basically entails running their install script.

I’d now got a nice playback device that would easily play the MP3 files downloaded from archive.org and so the next task was to find a suitable second-hand radio set.

Preparing the case

After a lot of searching on auction sites, I eventually found a radio that was going to be suitable: wasn’t too large, was constructed from wood, and looked old enough to convince the casual observer. I had to settle for something that actually came from the early 1950s, but it drew on design influences from earlier years and wasn’t too large as a lot of the real period ones tended to be (and it was only £15). This is a fun project, so a bit of leeway was fine by me in this respect.

When the radio arrived, my first thought as a tinkerer was perhaps I should get the valves running, but a quick piece of research turned up that I’d probably have to replace all the resistors and capacitors and all the old wiring and then hope that the valves still worked. Then discovering that the design used a live chassis running at 240 V soon convinced me that I should get back on track and replace everything.

With a few bolts and screws removed, I soon had an empty case.

I then stripped out all the interior components and set about restoring the case and dial glass, seeing what I could use by way of the volume and power controls. Sadly, there didn’t seem to be any way to hook into the old controls, so I needed to design a new chassis to mount all the components, which I did in Tinkercad, an online 3D CAD package. The design was then downloaded and printed on my 3D printer.

It took a couple of iterations, and during this phase, I wondered if I could use the original speaker. It turned out to be absolutely great, and the audio took on a new quality and brought even more authenticity to the project.

The case itself was pretty worn and faded, and the varnish had cracked, so I decided to strip it back. The surface was actually veneer, but you can still sand this. After a few applications of Nitromors to remove the varnish, it was sanded to remove the scratches and finished off with fine sanding.

The wood around the speaker grille was pretty cracked and had started to delaminate. I carefully removed the speaker grille cloth, and fixed these with a few dabs of wood glue, then used some Tamiya brown paint to colour the edges of the wood to blend it back in with the rest of the case. I was going to buy replacement cloth, but it’s fairly pricey – I had discovered a trick of soaking the cloth overnight in neat washing-up liquid and cold water, and it managed to lift the years of grime out and give it a new lease of life.

At this point, I should have just varnished or used Danish oil on the case, but bitten by the restoration bug I thought I would have a go at French polishing. This gave me a huge amount of respect for anyone that can do this properly. It’s messy, time-consuming, and a lot of work. I ended up having to do several coats, and with all the polishing involved, this was probably one of the most time-consuming tasks, plus I ended up with some pretty stained fingers as a result.

The rest of the case was pretty easy to clean, and the brass dial pointer polished up nice and shiny with some Silvo polish. The cloth was glued back in place, and the next step was to sort out the dial and glass.

Frequency, volume, glass, and knobs

Unfortunately, the original glass was cracked, so a replacement part was cut from some Makrolon sheet, also known as Lexan. I prefer this to acrylic as it’s much easier to cut and far less likely to crack when drilling it. It’s used as machine guards as well and can even be bent if necessary.

With the dial, I scanned it into the PC and then in PaintShop I replaced the existing frequency scale with a range of years running from 1939 to 1945, as the aim was for anyone using the radio to just dial the year they wanted to listen to. The program will then read the value of the potentiometer, and randomly select a file to play from that year.

It was also around about now that I had to come up with some means of having the volume control the sound and an interface for the frequency dial. Again there are always several options to consider, and I originally toyed with using a couple of rotary encoders and using one of these with the built-in push button as the power switch, but eventually decided to just use some potentiometers. Now I just had to come up with an easy way to read the analogue value of the pots and get that into the program.

There are quite a few good analogue-to-digital boards and HATs available, but with simplicity in mind, I chose to use an MCP3002 chip as it was only about £2. This is a two-channel analogue-to-digital converter (ADC) and outputs the data as a 10-bit value onto the SPI bus. This sounds easy when you say it, but it proved to be one of the trickier technical tasks as none of the code around for the four-channel MCP3008 seemed to work for the MCP3002, nor did many of the examples that were around for the MCP3002 – I think I went through about a dozen examples. At long last, I did find some code examples that worked, and with a bit of modification, I had a simple way of reading the values from the two potentiometers. You can download the original code by Stéphane Guerreau from GitHub. To use this on your Raspberry Pi, you’ll also need to run up raspi-config and switch on the SPI interface. Then it is simply a case of hooking up the MCP3002 and connecting the pots between the 3v3 line and ground and reading the voltage level from the wiper of the pots. When coding this, I just opted for some simple if-then statements in cap-Python to determine where the dial was pointing, and just tweaked the values in the code until I got each year to be picked out.

Power supply and control

One of the challenges when using a Raspberry Pi in headless mode is that it likes to be shut down in an orderly fashion rather than just having the power cut. There are lots of examples that show how you can hook up a push button to a GPIO pin and initiate a shutdown script, but to get the Raspberry Pi to power back up you need to physically reset the power. To overcome this piece of the puzzle, I use a Pimoroni OnOff SHIM which cleverly lets you press a button to start up, and then press and hold it for a second to start a shutdown. It’s costly in comparison to the price of a Raspberry Pi Zero, but I’ve not found a more convenient option. The power itself is supplied by using an old power bank that I had which is ample enough to power the radio long enough to be shown off, and can be powered by USB connector if longer-term use is required.

To illuminate the dial, I connected a small LED in series with a 270R resistor to the 3v3 rail so that it would come on as soon as the Raspberry Pi received power, and this lets you easily see when it’s on without waiting for the Raspberry Pi to start up.

The code

If you’re interested in the code Adam used to build his time machine, especially if you’re considering making your own, you’ll find it all in this month’s HackSpace magazine. Download the latest issue for free here, subscribe for more issues here, or visit your local newsagent or the Raspberry Pi Store, Cambridge to pick up the magazine in physical, real-life, in-your-hands print.

The post Listen to World War II radio recordings with a Raspberry Pi Zero appeared first on Raspberry Pi.

Build a xylophone-playing robot | HackSpace magazine #22

via Raspberry Pi

HackSpace magazine issue 22 is out now, and our favourite tutorial this month will show you how to make this, a xylophone-playing robot!

Build a glockenspiel-playing robot with HackSpace magazine

Why spend years learning to play a musical instrument when you could program a robot to do it for you? This month HackSpace magazine, we show you how to build a glockenspiel-playing robot. Download the latest issue of HackSpace for free: http://rpf.io/hs22yt Follow HackSpace on Instagram: http://rpf.io/hsinstayt

If programming your own instrument-playing robot isn’t for you, never fear, for HackSpace magazine is packed full of other wonderful makes and ideas, such as:

  • A speaker built into an old wine barrel
  • Free-form LEDs
  • Binary knitwear
  • A Raspberry Pi–powered time machine
  • Mushroom lights
  • A…wait, hold on, did I just say a Raspberry Pi–powered time machine? Hold on…let me just download the FREE PDF and have a closer look. Page 14, a WW2 radio broadcast time machine built by Adam Clark. “I bought a very old, non-working valve radio, and replaced the internals with a Raspberry Pi Zero on a custom 3D-printed chassis.” NICE!

Honestly, this month’s HackSpace is so full of content that it would take me all day to go through everything. But, don’t take my word for it — try it yourself.

HackSpace magazine is out now, available in print from your local newsagent or from the Raspberry Pi Store in Cambridge, online from Raspberry Pi Press, or as a free PDF download. Click here to find out more and, while you’re at it, why not have a look at the subscription offers available, including the 12-month deal that comes with a free Adafruit Circuit Playground!

Author’s note

Yes, I know it’s a glockenspiel in the video.

The post Build a xylophone-playing robot | HackSpace magazine #22 appeared first on Raspberry Pi.

Brand-new books from The MagPi and HackSpace magazine

via Raspberry Pi

Hey folks, Rob from The MagPi here! Halloween is over and November has just begun, which means CHRISTMAS IS ALMOST HERE! It’s never too early to think about Christmas — I start in September, the moment mince pies hit shelves.

Elf GIF

What most people seem to dread about Christmas is finding the right gifts, so I’m here to help you out. We’ve just released two new books: our Official Raspberry Pi Projects Book volume 4, and the brand-new Book of Making volume 1 from the team at HackSpace magazine!

Book of Making volume 1

HackSpace magazine book 1 - Raspberry Pi

Spoiler alert: it’s a book full of making

The Book of Making volume 1 contains 50 of the very best projects from HackSpace magazine, including awesome project showcases and amazing guides for building your own incredible creations. Expect to encounter trebuchets, custom drones, a homemade tandoori oven, and much more! And yes, there are some choice Raspberry Pi projects as well.

The Official Raspberry Pi Projects Book volume 4

The MagPi Raspberry pi Projects book 4

More projects, more guides, and more reviews!

Volume 4 of the Official Raspberry Pi Projects Book is once again jam-packed with Raspberry Pi goodness in its 200 pages, with projects, build guides, reviews, and a little refresher for beginners to the world of Raspberry Pi. Whether you’re new to Pi or have every single model, there’s something in there for you, no matter your skill level.

Free shipping? Worldwide??

You can buy the Book of Making and the Official Raspberry Pi Projects Book volume 4 right now from the Raspberry Pi Press Store, and here’s the best part: they both have free worldwide shipping! They also roll up pretty neatly, in case you want to slot them into someone’s Christmas stocking. And you can also find them at our usual newsagents.

Both books are available as free PDF downloads, so you can try before you buy. When you purchase any of our publications, you contribute toward the hard work of the Raspberry Pi Foundation, so why not double your giving this holiday season by helping us put the power of digital making into the hands of people all over the world?

Anyway, that’s it for now — I’m off for more mince pies!

The post Brand-new books from The MagPi and HackSpace magazine appeared first on Raspberry Pi.

HackSpace magazine 12: build your first rocket!

via Raspberry Pi

Move over, Elon Musk — there’s a new rocket maverick in town: YOU!

Rockets!

Step inside the UK rocketry scene, build and launch a rocket, design your own one, and discover the open-source rocket programmes around the world! In issue 12, we go behind the scenes at a top-secret launch site in the English Midlands to have a go at our own rocket launch, find the most welcoming bunch of people we’ve ever met, and learn about centre of gravity, centre of pressure, acceleration, thrust, and a load of other terms that make us feel like NASA scientists.

Meet the Maker: Josef Prusa

In makerception news, we meet the maker who makes makers, Josef Prusa, aka Mr 3D Printing, and we find out what’s next for his open-source hardware empire.

Open Science Hardware

There are more than seven billion people on the planet, and 90-odd percent of them are locked out of the pursuit of science. Fishing, climate change, agriculture: it all needs data, and we’re just not collecting as much as we should. Global Open Science Hardware is working to change that by using open, shared tech — read all about it in issue 12!

And there’s more…

As always, the new issue is packed with projects: make a way-home machine to let your family know exactly when you’ll walk through the front door; build an Alexa-powered wheel of fortune to remove the burden of making your own decisions; and pay homage to Indiana Jones and the chilled monkey brains in Temple of Doom with a capacitive touch haunted monkey skull (no monkeys were harmed in the making of this issue). All that, plus steampunk lighting, LEDs, drills, the world’s biggest selfie machine, and more, just for you. So go forth and make something!

Get your copy of HackSpace magazine

If you like the sound of this month’s content, you can find HackSpace magazine in WHSmith, Tesco, Sainsbury’s, and independent newsagents in the UK from tomorrow. If you live in the US, check out your local Barnes & Noble, Fry’s, or Micro Center next week. We’re also shipping to stores in Australia, Hong Kong, Canada, Singapore, Belgium, and Brazil, so be sure to ask your local newsagent whether they’ll be getting HackSpace magazine. And if you’d rather try before you buy, you can always download the free PDF now.

Subscribe now

Subscribe now” may not be subtle as a marketing message, but we really think you should. You’ll get the magazine early, plus a lovely physical paper copy, which has a really good battery life.

Oh, and twelve-month print subscribers get an Adafruit Circuit Playground Express loaded with inputs and sensors and ready for your next project. Tempted?

The post HackSpace magazine 12: build your first rocket! appeared first on Raspberry Pi.