Tag Archives: Led(s)

Driving a 48-segment RGB LED bar graph with a Teensy 3.2

via Dangerous Prototypes

pics-IMG_20170723_133700-600

Glen Akins writes:

In my post Driving a SparkFun 48-Segment RGB LED Bar Graph, I stated that the hardware built there could be used to drive the LED bar graph with any combination of hardware and software that could drive one of the common 32×32 or 32×16 RGB LED matrices. Today I’m back to prove that point. In this post, I ditch the FPGA and drive the 48-segment RGB LED bar graph using a Teensy 3.2 board and the Pixelmatix SmartMatrix 3 library.

More details at Glen Akins’ blog.

Using a Decade Counter to Make LEDs Flash

via hardware – Hackaday

[Andrea De Napoli] created a LED display consisting of a half-dozen LEDs connected to the inverted signals of a CD4017 decade counter, giving the effect that a dark LED is running back and forth. The CD4017 works by activating 10 outputs, one at a time, as controlled by a clock signal sent to pin 14.

The first and last LEDs are lit by outputs 0 and 5 with the help of a PNP transistor and a 12K resistor. The middle four LEDs are switched by two outputs each and go dark when one of them goes high. [Andrea] really delves into the CD4017 and he shares a lot of detail in the project page.

Hackaday publishes a lot of posts about obscure ICs: Project 54/74 aims to create a database of die images of 5400 and 7400 series ICs. In a remix of a classic, the Baby 10 uses a 4017 to make a music sequencer.


Filed under: hardware

App note: How to measure thermal resistance of LED emitters and LED arrays

via Dangerous Prototypes

an_lumileds_wp23

Another white paper from Lumileds about LED thermal resistance. Link here (PDF)

Thermal performance is the most critical factor of a well-designed LED lighting system. A lighting system with proper thermal design has higher efficacy, meaning more light can be extracted using less energy, and better long term reliability.

App note: Flash for “Selfies”

via Dangerous Prototypes

an_lumileds_wp26

Effective front facing camera flash discussed in this white paper from Lumileds. Link here (PDF)

Smartphones are ubiquitous in everybody’s daily lives, a trend that shows no sign of slowing. A key component of the smartphone is the camera, which has gained market share over Digital Still Cameras due to its convenience.

As the demand for smartphone cameras increases, sensor makers are continuously working to improve the resolution and while 20MPix capability gained in importance for the main camera of the smartphone, the resolution race has begun for the front camera. With the rise in popularity of “selfies” and the 5 to 8 Mpix resolution for the front camera, it is not surprising that camera flash is starting to be more readily implemented for front cameras also. However, to make a successful front flash that captures an ideal “selfie,” there are certain illuminance requirements and shorter flash pulses that are recommended.

Creating custom 3D printed LED bar graphs

via Dangerous Prototypes

01.banner.DSC_1663

Glen Akins has a nice build log on his 3D printed LED bar graphs:

While building my zombie containment unit, I decided I wanted some LED displays or bar graphs to complement the containment status video running on the smaller secondary video monitor. Some other containment units used LED air pressure gauges from eBay. I wanted to achieve a similar look, but I also wanted my gauge to be software controllable so I could change the number of segments lit in response to events in the playback of the two videos. I decided it was time to build my own LED bar graphs.

More details at Glen’s blog.

Programmable LED dimmer

via Dangerous Prototypes

20170423_ProgrammableDimmer_041

Programmable LED dimmer from Soldernerd:

Around one and a half years ago I’ve designed and built various LED dimmers for both white and RGB LEDs. Then late last year someone approached me asking if I could make an RGB dimmer for him, too. But my designs were really tailored to their specific applications and built with home-made, i.e. milled PCBs which are time-consuming to make. So I decided to make a more universal version based on a proper, etched board which could be built in a small series and used for all kind of applications, both white and RGB. The result is this versatile, programmable 4-channel dimmer.
The design is based on my previous RGB dimmer but with a number of improvements.

Project info at Soldernerd homepage and the GitHub repository here.