Tag Archives: Microcontrollers

The Power Glove Ultra Is The Power Glove We Finally Deserve

via hardware – Hackaday

How do you make the most awesome gaming peripheral ever made even more bad? Give it a 21st-century upgrade! [Alessio Cosenza] calls this mod the Power Glove Ultra, and it works exactly as we imagined it should have all those years ago.

The most noticeable change is the 3D-printed attachment that hosts the Bluetooth module, a combination USB charger and voltage booster, and a Metro Mini(ATmega328) board. On top of a 20-hour battery life, a 9-axis accelerometer, gyroscope, and compass gives the Power Glove Ultra full 360-degree motion tracking and upgrades the functionality of the finger sensors with a custom board and five flex sensor strips with 256 possible positions for far more nuanced input. [Cosenza] has deliberately left the boards and wires exposed for that cyberpunk, retro-future look that is so, so bad.

Power Glove Ultra Poster[Cosenza] has also modified a Wiimote Nunchuck controller to provide complimentary functionality for games that require an analog stick (such as a first-person shooter game). [Cosenza] aims to keep the project open source for the love of the glove and the community surrounding it, though he says the code isn’t at the point where he’s comfortable releasing it.

Until those files are released, our craving for something we love because it’s so bad must be satiated by a few other Power Glove hacks. A few years ago, we saw the Power Glove used as the perfect tool for stop-motion animation, and take over Maker Faire with a glove-controlled drone. There’s still a lot of life left in the electronic glove, and with the current trend of wearable electronics, we’re only going to see more. This time, hopefully without pre-teen antagonists telling us how bad something is.

[Thanks for the tip, Nils Hitze!]

Filed under: hardware, home entertainment hacks, Microcontrollers, nintendo hacks

A Singing Arc Lighter

via hardware – Hackaday

We’ve all been guilty of buying things we want, but don’t need. And that’s how [PodeCoet] found himself in possession of a couple of double-arc electric lighters, thanks to those far-eastern websites purveying cheap goods. ‘Tis the season of giving after all, justified [PodeCoet]. Being a hacker, the obvious thing to do was to make them belt out tinny tunes. If you’re still holding on to your gas lighters, don’t — because these electric ones are ‘oh so hackable’. Dual-arcs are the same, but twice the fun.

[PodeCoet] starts off with a tear down of the lighter, to figure out the schematic and understand how it works. There’s a charger IC for the LiPo, an unidentifiable micro-controller, a pair of FET’s driving a pair of power transistors, which in turn drive the HF output transformer at around 15.6kHz. He guesses that the “original micro-controller is probably an OTP part like a 12C508” but in the absence of a chipID he couldn’t be sure.

Instead of trying to break his head over it, he just swapped in a pin-compatible PIC12F1840. All that’s left to do is to write some quick-n-dirty code and sprinkle it with funny comments in order to modulate the output signal at audio frequencies. His first choice of tune was “We are Number One” by Lazy Town, the Icelandic educational musical comedy children’s television series (phew). But redditors are awesome, and someone asked him to add the “Imperial March” and [PodeCoet] obliged.

Since he was going to gift these lighters, the sneaky hacker added a prank in the code. Every time the button is pressed for more than two seconds, it works as normally expected and a counter is incremented. On the 20th count, and for one time only, the tune is played. No amount of pressing the button will play the tune again, confounding the user to wonder if he was hallucinating. This also helps ensure the lighter does not self-destruct prematurely, since the output transformer is likely designed for low duty cycles. His blog post contains all of the information needed to do this hack along with handy tips to avoid the problems he faced. A “Happy Birthday” tune would be great when lighting some birthday candles, we think.

[PodeCoet] has a fancy for high voltage stuff – check out “Home built Stun Baton turns you into a cop from Demolition Man“. This man surely loves his pranks, as evidenced by “Hacking your Co-Workers Label Makers“. And the farce is strong in this one — “Student trolls anti-Arduino Prof with parasite MCU“.

Thanks to [ryg] for tipping us about the reddit thread.

Filed under: hardware, Microcontrollers

A Completely Open Microcontroller

via hardware – Hackaday

An annotated mRISCV die image

I don’t know about you, but the idea of an Arduino-class microprocessor board which uses completely open silicon is a pretty attractive prospect to us. That’s exactly [onchipUIS]’s stated goal. They’re part of a research group at the Universidad Industrial de Santander and have designed and taped out a Cortex M0 RISCV implementation.

The RISCV project has developed an open ISA (instruction set architecture) for modern 32-bit CPUs. More than 40 research groups and companies have now jumped on the project and are putting implementations together.

[onchipUIS] is one such project. And their twitter timeline shows the rapid progress they’ve been making recently.

Die directly bonded to an OSHPark PCB

After tapeout, they started experimenting with their new wirebonding machine. Wirebonding, particularly manual bonding, on a novel platform is a process fraught with problems. Not only have [onchipUIS] successfully bonded their chip, but they’ve done so using a chip on board process where the die is directly bonded to a PCB. They used OSHPark boards and described the process on Twitter.

The board they’ve built breaks out all the chip’s peripherals, and is a convenient test setup to help them validate the platform. Check it, and some high resolution die images, out below. They’re also sending us a die to image using our electron microscope down at hackerfarm, and we look forward to the results!

The current mRISCV board

Filed under: hardware, Microcontrollers

Adding ADC to Microcontrollers without ADC

via Dangerous Prototypes


Scott Harden writes:

I recently had the need to carefully measure a voltage with a microcontroller which lacks an analog-to-digital converter (ADC), and I hacked together a quick and dirty method to do just this using a comparator, two transistors, and a few passives. The purpose of this project is to make a crystal oven controller at absolute minimal cost with minimal complexity. Absolute voltage accuracy is not of high concern (i.e., holding temperature to 50.00 C) but precision is the primary goal (i.e., hold it within 0.01 C of an arbitrary target I set somewhere around 50 C).

More details at Scott Harden’s blog.

VHF Frequency Counter with PC Interface

via Dangerous Prototypes


Scott has published a new build:

This is the general idea behind how this frequency counter works. It’s so simple! It’s entirely digital, and needs very few passive components. sn74lv8154 is configured in 32-bit mode (by chaining together its two 16-bit counters, see the datasheet for details) and acts as the front-end directly taking in the measured frequency. This chip is “rare” in the sense I find very few internet projects using it, and they’re not available on ebay. However they’re cheap and plentiful on mouser, so I highly encourage others to look into using it! The datasheet isn’t very clear about its maximum frequency, but in my own tests I was able to measure in excess of 100 MHz from a breadboarded circuit! This utilized two cascaded ICS501 PLL frequency multiplier ICs to multiply a signal I had available (the 11.0592 MHz crystal the MCU was running from) by ten, yielding 110 MHz, which it was able to measure

Project info at SWHarden homepage.

Pressure, temperature and humidity sensor based on MS5637 HDC1080

via Dangerous Prototypes


Mare writes:

This is another small module to measure air pressure, temperature and humidity. Two sensors are on-board: MS5637 and HDC1080. Microcontroller is small cortex M0 in TSSOP-20 housing from STM: STM32F070CxP. The SN65HVD72DGKR provides RS485 interface functionality with half duplex mode. Voltage regulator, reverse polarity protection and some LED indicators are provided on-board. Complete module is 10x55mm, produced on single-sided PCB, easily producible in every home lab with proto-PCB capability.

More info at Mare & Gal Electronics homepage.