Tag Archives: music

Motorgan is an electromagnetic organ

via Arduino Blog

What do you get when you combine three small motors with a guitar pickup and a touch keypad? That would be the Motorgan by Moscow-based media artist Dmitry Morozov (aka ::vtol::). The result is a unique Arduino Mega-controlled instrument that looks and sounds like he somehow combined a V8 engine with a pipe organ.

The electromagnetic/electromechanical organ uses two differently sized PC cooling fans, as well as a gear motor to produce various sounds. A separate keypad is used for each motor, and each of the 24 keys can be tuned with a potentiometer, which reportedly allows one to “make any kind of music.”

The speed of each motor is controlled by voltage changes via touch keyboard with 24 keys. Keyboard is split into three parts (registers) for each motor, so it’s possible to play chords/polyphonic lines by taking one note from each register. Electromagnetic fields produced by motors are picked up with a single coil guitar pickup.

As you might suspect, it’s not exactly an easy instrument to play, but the results are certainly stunning, or perhaps you might even say “shocking.” Be sure to check out ::vtol::’s latest project in the video below!

NOMNOM is an audiovisual DJ machine

via Arduino Blog

Perhaps you enjoy various flavors of electronic music, and would love to try making your own. Although this seems like a fun idea, after considering the amount of equipment and knowledge that you need to get started, many people simply move on to something else. On the other hand, the NOMNOM machine, seen here, allows you to create tunes visually using YouTube clips as samples.

The device has 16 buttons which can start and stop up to 16 clips displayed via a JavaScript web application. An Arduino Uno takes input from these buttons as well as four potentiometers to modify the clip sounds, and sends the appropriate signals to the computer running the app. There are also four knobs that control the repetition rate, volume, speed and playable length of each selected video. This enables you to make really interesting music without the normally steep learning curve.

For more details, you can check out the project log on Hackaday.io or on GitHub. NOMNOM will also be making an appearance at the World Maker Faire in New York City this fall, so be sure to see it in person if you’re there!

Ultrasonic pi-ano

via Raspberry Pi

At the Raspberry Pi Foundation, we love a good music project. So of course we’re excited to welcome Andy Grove‘s ultrasonic piano to the collection! It is a thing of beauty… and noise. Don’t let the name fool you – this build can do so much more than sound like a piano.

Ultrasonic Pi Piano – Full Demo

The Ultrasonic Pi Piano uses HC-SR04 ultrasonic sensors for input and generates MIDI instructions that are played by fluidsynth. For more information: http://theotherandygrove.com/projects/ultrasonic-pi-piano/

What’s an ultrasonic piano?

What we have here, people of all genders, is really a theremin on steroids. The build’s eight ultrasonic distance sensors detect hand movements and, with the help of an octasonic breakout board, a Raspberry Pi 3 translates their signals into notes. But that’s not all: this digital instrument is almost endlessly customisable – you can set each sensor to a different octave, or to a different instrument.

octasonic breakout board

The breakout board designed by Andy

Andy has implemented gesture controls to allow you to switch between modes you have preset. In his video, you can see that holding your hands over the two sensors most distant from each other changes the instrument. Say you’re bored of the piano – try a xylophone! Not your jam? How about a harpsichord? Or a clarinet? In fact, there are 128 MIDI instruments and sound effects to choose from. Go nuts and compose a piece using tuba, ocarina, and the noise of a guitar fret!

How to build the ultrasonic piano

If you head over to Instructables, you’ll find the thorough write-up Andy has provided. He has also made all his scripts, written in Rust, available on GitHub. Finally, he’s even added a video on how to make a housing, so your ultrasonic piano can look more like a proper instrument, and less like a pile of electronics.

Ultrasonic Pi Piano Enclosure

Uploaded by Andy Grove on 2017-04-13.

Make your own!

If you follow us on Twitter, you may have seen photos and footage of the Raspberry Pi staff attending a Pi Towers Picademy. Like Andy*, quite a few of us are massive Whovians. Consequently, one of our final builds on the course was an ultrasonic theremin that gave off a sound rather like a dying Dalek. Take a look at our masterwork here! We loved our make so much that we’ve since turned the instructions for building it into a free resource. Go ahead and build your own! And be sure to share your compositions with us in the comments.

Sonic the hedgehog is feeling the beat

Sonic is feeling the groove as well

* He has a full-sized Dalek at home. I know, right?

The post Ultrasonic pi-ano appeared first on Raspberry Pi.

Raspberry Pi Looper-Synth-Drum…thing

via Raspberry Pi

To replace his iPad for live performance, Colorado-based musician Toby Hendricks built a looper, complete with an impressive internal sound library, all running on a Raspberry Pi.

Raspberry Pi Looper/synth/drum thing

Check out the guts here: https://youtu.be/mCOHFyI3Eoo My first venture into raspberry pi stuff. Running a custom pure data patch I’ve been working on for a couple years on a Raspberry Pi 3. This project took a couple months and I’m still tweaking stuff here and there but it’s pretty much complete, it even survived it’s first live show!

Toby’s build is a pretty mean piece of kit, as this video attests. Not only does it have a multitude of uses, but the final build is beautiful. Do make sure to watch to the end of the video for a wonderful demonstration of the kit.

Inside the Raspberry Pi looper

Alongside the Raspberry Pi and Behringer U-Control sound card, Toby used Pure Data, a multimedia visual programming language, and a Teensy 3.6 processor to complete the build. Together, these allow for playback of a plethora of sounds, which can either be internally stored, or externally introduced via audio connectors along the back.

This guy is finally taking shape. DIY looper/fx box/sample player/synth. #teensy #arduino #raspberrypi #puredata

98 Likes, 6 Comments – otem rellik (@otem_rellik) on Instagram: “This guy is finally taking shape. DIY looper/fx box/sample player/synth. #teensy #arduino…”

Delay, reverb, distortion, and more are controlled by sliders along one side, while pre-installed effects are selected and played via some rather beautiful SparkFun buttons on the other. Loop buttons, volume controls, and a repurposed Nintendo DS screen complete the interface.

Raspberry Pi Looper Guts

Thought I’d do a quick overview of the guts of my pi project. Seems like many folks have been interested in seeing what the internals look like.

Code for the looper can be found on Toby’s GitHub here. Make sure to continue to follow him via YouTube and Instagram for updates on the build, including these fancy new buttons.

Casting my own urethane knobs and drum pads from 3D printed molds! #3dprinted #urethanecasting #diy

61 Likes, 4 Comments – otem rellik (@otem_rellik) on Instagram: “Casting my own urethane knobs and drum pads from 3D printed molds! #3dprinted #urethanecasting #diy”

I got the music in me

If you want to get musical with a Raspberry Pi, but the thought of recreating Toby’s build is a little daunting, never fear! Our free GPIO Music Box resource will help get you started. And projects such as Mike Horne’s fabulous Raspberry Pi music box should help inspire you to take your build further.

Raspberry Pi Looper post image of Mike Horne's music box

Mike’s music box boasts wonderful flashy buttons and turny knobs for ultimate musical satisfaction!

If you use a Raspberry Pi in any sort of musical adventure, be sure to share your project in the comments below!

 

 

The post Raspberry Pi Looper-Synth-Drum…thing appeared first on Raspberry Pi.

Making sweet, sweet music with pisound

via Raspberry Pi

I’d say I am a passable guitarist. Ever since I learnt about the existence of the Raspberry Pi in 2012, I’ve wondered how I could use one as a guitar effects unit. Unfortunately, I’m also quite lazy and have therefore done precisely nothing to make one. Now, though, I no longer have to beat myself up about this. Thanks to the pisound board from Blokas, musicians can connect all manner of audio gear to their Raspberry Pi, bringing their projects to a whole new level. Essentially, it transforms your Pi into a complete audio workstation! What musician wouldn’t want a piece of that?

pisound: a soundcard HAT for the Raspberry Pi

Raspberry Pi with pisound attached

The pisound in situ: do those dials go all the way to eleven?

pisound is a HAT for the Raspberry Pi 3 which acts as a souped-up sound card. It allows you to send and receive audio signals from its jacks, and send MIDI input/output signals to compatible devices. It features two 6mm in/out jacks, two standard DIN-5 MIDI in/out sockets, potentiometers for volume and gain, and ‘The Button’ (with emphatic capitals) for activating audio manipulation patches. Following an incredibly successful Indiegogo campaign, the pisound team is preparing the board for sale later in the year.

Setting the board up was simple, thanks to the excellent documentation on the pisound site. First, I mounted the board on my Raspberry Pi’s GPIO pins and secured it with the supplied screws. Next, I ran one script in a terminal window on a fresh installation of Raspbian, which downloaded, installed, and set up all the software I needed to get going. All I had to do after that was connect my instruments and get to work creating patches for Pure Data, a popular visual programming interface for manipulating media streams.

pisound with instruments and computer

Image from Blokas

Get creative with pisound!

During my testing, I created some simple fuzz, delay, and tremolo guitar effects. The possibilities, though, are as broad as your imagination. I’ve come up with some ideas to inspire you:

  • You could create a web interface for the guitar effects, accessible over a local network on a smartphone or tablet.
  • How about controlling an interactive light show or projected visualisation on stage using the audio characteristics of the guitar signal?
  • Channel your inner Matt Bellamy and rig up some MIDI hardware on your guitar to trigger loops and samples while you play.
  • Use a tilt switch to increase the intensity of an effect when the angle of the guitar’s neck is changed (imagine you’re really going for it during a solo).
  • You could even use the audio input stream as a base for generating other non-audio results.

pisound – Audio & MIDI Interface for your Raspberry Pi

Indiegogo Campaign: https://igg.me/at/pisound More Info: http://www.blokas.io Sounds by Sarukas: http://bit.ly/2myN8lf

Now I have had a taste of what this incredible little board can do, I’m very excited to see what new things it will enable me to do as a performer. It’s compact and practical, too: as the entire thing is about the size of a standard guitar pedal, I could embed it into one of my guitars if I wanted to. Alternatively, I could get creative and design a custom enclosure for it.

Using Sonic Pi with pisound

Community favourite Sonic Pi will also support the board very soon, as Sam Aaron and Ben Smith ably demonstrated at our fifth birthday party celebrations. This means you don’t even need to be able to play an instrument to make something awesome with this clever little HAT.

The Future of @Sonic_Pi with Sam Aaron & Ben Smith at #PiParty

Uploaded by Alan O’Donohoe on 2017-03-05.

I’m incredibly impressed with the hardware and the support on the pisound website. It’s going to be my go-to HAT for advanced audio projects, and, when it finally launches later this year, I’ll have all the motivation I need to create the guitar effects unit I’ve always wanted.

Find out more about pisound over at the Blokas website, and take a deeper look at the tech specs and other information over at the pisound documentation site.

Disclaimer: I am personally a backer of the Indiegogo campaign, and Blokas very kindly supplied a beta board for this review.

The post Making sweet, sweet music with pisound appeared first on Raspberry Pi.

Tableau: a generative music album based on the Sense HAT

via Raspberry Pi

Multi-talented maker Giorgio Sancristoforo has used a Raspberry Pi and Sense HAT to create Tableau, a generative music album. It’s an innovative idea: the music constantly evolves as it reacts to environmental stimuli like atmospheric pressure, humidity, and temperature.

Tableau Generative Album

“There is no doubt that, as music is removed by the phonographrecord from the realm of live production and from the imperative of artistic activity and becomes petrified, it absorbs into itself, in this process of petrification, the very life that would otherwise vanish.”

Creating generative music

“I’ve been dreaming about using portable microcomputers to create a generative music album,” explains Giorgio. “Now my dream is finally a reality: this is my first portable generative LP (PGLP)”. Tableau uses both a Raspberry Pi 2 and a Sense HAT: the HAT provides the data for the album’s musical evolution via its range of onboard sensors.

Image of Tableau generative music device with Sense HAT illuminated

Photo credit: Giorgio Sancristoforo

The Sense HAT was originally designed for use aboard the International Space Station (ISS) as part of the ongoing Astro Pi challenge. It has, however, become a staple within the Raspberry Pi maker community. This is partly thanks to the myriad of possibilities offered by its five onboard sensors, five-button joystick, and 8 × 8 LED matrix.

Image of Tableau generative music device with Sense HAT illuminated

Photo credit: Giorgio Sancristoforo

Limited edition

The final release of Tableau consists of a limited edition of fifty PGLPs: each is set up to begin playing immediately power is connected, and the music will continue to evolve indefinitely. “Instead of being reproduced as on a CD or in an MP3 file, the music is spontaneously generated and arranged while you are listening to it,” Giorgio explains on his website. “It never sounds the same. Tableau creates an almost endless number of mixes of the LP (4 × 12 factorial). Each time you will listen, the music will be different, and it will keep on evolving until you switch the power off.”

Image of Tableau generative music device with Sense HAT illuminated

Photo credit: Giorgio Sancristoforo

Experiment with the Sense HAT

What really interests us is how the sound of Tableau might alter in different locations. Would it sound different in Cambridge as opposed to the deserts of Mexico? What about Antarctica versus the ISS?

If Giorgio’s project has piqued your interest, why not try using our free data logging resource for the Sense HAT? You can use it to collect information from the HAT’s onboard sensors and create your own projects. How about collecting data over a year, and transforming this into your own works of art?

Even if you don’t have access to the Sense HAT, you can experience it via the Sense HAT desktop emulator. This is a great solution if you want to work on Sense HAT-based projects in the classroom, as it reduces the amount of hardware you need.

If you’ve already built a project using the Sense HAT, make sure to share it in the comments below. We would love to see what you have been making!

 

The post Tableau: a generative music album based on the Sense HAT appeared first on Raspberry Pi.