Tag Archives: raspberry pi 3

Raspberry Pi underwater camera drone | The MagPi 80

via Raspberry Pi

Never let it be said that some makers won’t jump in at the deep end for their ambitious experiments with the Raspberry Pi. When Ievgenii Tkachenko fancied a challenge, he sought to go where few had gone before by creating an underwater drone, successfully producing a working prototype that he’s now hard at work refining.

Inspired by watching inventors on the Discovery Channel, Ievgenii has learned much from his endeavour. “For me it was a significant engineering challenge,” he says, and while he has ended up submerging himself within a process of trial-and-error, the results so far have been impressive.

Pi dive

The project began with a loose plan in Ievgenii’s head. “I knew what I should have in the project as a minimum: motions, lights, camera, and a gyroscope inside the device and smartphone control outside,” he explains. “Pretty simple, but I didn’t have a clue what equipment I would be able to use for the drone, and I was limited by finances.”

Bearing that in mind, one of his first moves was to choose a Raspberry Pi 3B, which he says was perfect for controlling the motors, diodes, and gyroscope while sending video streams from a camera and receiving commands from a control device.

The Raspberry Pi 3 sits in the housing and connects to a LiPo battery that also powers the LEDs and motors

“I was really surprised that this small board has a fully functional UNIX-based OS and that software like the Node.js server can be easily installed,” he tells us. “It has control input and output pins and there are a lot of libraries. With an Ethernet port and wireless LAN and a camera, it just felt plug-and-play. I couldn’t find a better solution.”

The LEDs are attached to radiators to prevent overheating, and a pulse driver is used for flashlight control

Working with a friend, Ievgenii sought to create suitable housing for the components, which included a twin twisted-pair wire suitable for transferring data underwater, an electric motor, an electronic speed control, an LED together with a pulse driver, and a battery. Four motors were attached to the outside of the housing, and efforts were made to ensure it was waterproof. Tests in a bath and out on a lake were conducted.

Streaming video

With a WiFi router on the shore connected to the Raspberry Pi via RJ45 connectors and an Ethernet cable, Ievgenii developed an Android application to connect to the Raspberry Pi by address and port (“as an Android developer, I’m used to working with the platform”). This also allowed movement to be controlled via the touchscreen, although he says a gamepad for Android can also be used. When it’s up and running, the Pi streams a video from the camera to the app — “live video streaming is not simple, and I spent a lot of time on the solution” — but the wired connection means the drone can only currently travel as far as the cable length allows.

The camera was placed in this transparent waterproof case attached to the front of the waterproof housing

In that sense, it’s not perfect. “It’s also hard to handle the drone, and it needs to be enhanced with an additional controls board and a few more electromotors for smooth movement,” Ievgenii admits. But as well as wanting to base the project on fast and reliable C++ code and make use of a USB 4K camera, he can see the future potential and he feels it will swim rather than sink.

“Similar drones are used for boat inspections, and they can also be used by rescue squads or for scientific purposes,” he points out. “They can be used to discover a vast marine world without training and risks too. In fact, now that I understand the Raspberry Pi, I know I can create almost anything, from a radio electronic toy car to a smart home.”

The MagPi magazine

This article was lovingly borrowed from the latest issue of The MagPi magazine. Pick up your copy of issue 80 from your local stockist, online, or by downloading the free PDF.

Subscribers to The MagPi also get a rather delightful subscription gift!

The post Raspberry Pi underwater camera drone | The MagPi 80 appeared first on Raspberry Pi.

Raspberry Pi vs a Raspberry Pi–powered escape room

via Raspberry Pi

A few Mondays ago, the Raspberry Pi North America team visited a very special, Raspberry Pi–powered Escape Room in San Francisco. Run by Palace Games, the Edison Escape Room is an immersive experience full of lights, sensors, and plenty of surprises. This is the team’s story of how they entered, explored, and ultimately escaped this room.

At World Maker Faire this year, our very own social media star Alex Bate met Jordan Bunker, one of the Production Artists at Palace Games. Emails were sent, dates arranges, and boom, the Raspberry Pi North America team had to face the Edison Escape Room!

Escape rooms

In case you’re not familiar, an escape room is a physical adventure game in which players solve a series of puzzles and riddles using clues, logic, and strategy to complete the game’s objectives. Many escape room designers use physical computing to control the many sensors and triggers involved in the player experience.

Palace Games Edison Escape Room

The team vs Edison

Upon entering the Edison Escape Room, my team and I quickly realized that we were within a complex system built like a giant computer! So even though it was our first-ever time in an escape room, that would not be a disadvantage for us.

Palace Games Edison Escape Room

Our goal was to accomplish a variety of tasks, including solving many puzzles, looking for hidden clues when anything could be a clue, completing circuits, moving with the floor, and getting a bit of a workout.

The true test, however, was how well we communicated and worked with each other — which we did an awesome job at: at times we split up the work to effectively figure out the many different puzzles and clues; there was a lot “try it this way”, “maybe it means this”, and “what if it’s supposed to go that way” being yelled across the room. Everyone had their Edison thinking hat on that day, and we were so ecstatic when we completed the last challenge and finally escaped!

Palace Games Edison Escape Room

The inner workings

After escaping the room, we got the chance to explore behind the scenes. We found a local network of many Raspberry Pis that are coordinated by a central Raspberry Pi server. The Python Banyan framework is the connective tissue between the Raspberry Pis and their attached components.

Palace Games Edison Escape Room

The framework facilitates the communication between the Pis and the central server via Ethernet. The Raspberry Pis are used to read various types of sensors and to drive actuators that control lights, open doors, or play back media. And Raspberry Pis also drive the control panels that employees use to enter settings and keep tabs on the game.

“Raspberry Pi keeps us going. It’s the heart and soul of our rooms.”  – Elizabeth Sonder, Design Engineer & Production Manager

We highly recommend heading over to Palace Games and exploring one of their many escape rooms. It’s a great team-building exercise and definitely allows you to learn a lot about the people you work with. Thank you to the Palace Games team for hosting us, and we hope to return and escape one of their rooms again soon!

The post Raspberry Pi vs a Raspberry Pi–powered escape room appeared first on Raspberry Pi.

Three-factor authentication is the new two-factor authentication

via Raspberry Pi

Two-factor authentication continues to provide our online selves with more security for our email and online banking. Meanwhile, in the physical world, protecting our valuables is now all about three-factor authentication.

A GIF of a thumbprint being scanned for authentication - three-factor authentication

Not sure what I mean? Here’s a video from Switched On Network that demonstrates how to use a Raspberry Pi to build a three-factor door lock comprised of an RFID keyring, 6-digit passcode, and one-time access code sent to your mobile phone.

Note that this is a fairly long video, so feel free to skip it for now and read my rather snazzy tl;dr. You can come back to the video later, with a cup of tea and 20 minutes to spare. It’ll be worth it, I promise.

Build a Raspberry Pi Smart Door Lock Security System with Three Factor Authentication!

https://amzn.to/2A98EaZ (UK) / https://amzn.to/2LDlxyc (US) – Get a free audiobook with a 30-day trial of Audible from Amazon! Build the ultimate door lock system, effectively turning your office or bedroom into a high-security vault!

The tl;dr of three-factor door locks by Alex Bate

To build Switched On Network’s three-factor door lock, you need to source a Raspberry Pi 3, a USB RFID reader and fob, a touchscreen, a electronic door strike, and a relay switch. You also need a few other extras, such as a power supply and a glue gun.

A screenshot from the three-factor authentication video of a glue gun

Once you’ve installed the appropriate drivers (if necessary) for your screen, and rotated the display by 90 degrees, you can skip ahead a few steps by installing the Python script from Switched On Network’s GitHub repo! Cheers!

A screenshot from the three-factor authentication video of the screen attached to the Pi in portrait mode

Then for the physical build: you need to attach the door strike, leads, and whatnot to the Pi — and all that together to the door and door frame. Again, I won’t go into the details, since that’s where the video excels.

A screenshot from the video of the components of the three-factor authentication door lock

The end result is a superior door lock that requires you to remember both your keys and your phone in order to open it. And while we’d never suggest using this tech to secure your house from the outside, it’s a perfect setup for inside doors to offices or basement lairs.

A GIF of Dexter from Dexter's Laboratory

Everyone should have a lair.

Now go watch the video!

The post Three-factor authentication is the new two-factor authentication appeared first on Raspberry Pi.

I feel the earth move under my feet (in Michigan)

via Raspberry Pi

The University of Michigan is home to the largest stadium in the USA (the second-largest in the world!). So what better place to test for spectator-induced seismic activity than The Big House?

The Big House stadium in Michigan

The Michigan Shake

University of Michigan geology professor Ben van der Pluijm decided to make waves by measuring the seismic activity produced during games at the university’s 107601 person-capacity stadium. Because earthquakes are (thankfully) very rare in the Midwest, and therefore very rarely experienced by van der Pluijm’s introductory geology class, he hoped this approach would make the movement of the Earth more accessible to his students.

“The bottom line was, I wanted something to show people that the Earth just shakes from all kinds of interactions,” explained van der Pluijm in his interview with The Michigan Daily. “All kinds of activity makes the Earth shake.”

The Big House stadium in Michigan

To measure the seismic activity, van der Pluijm used a Raspberry Pi, placing it on a flat concrete surface within the stadium.

Van der Pluijm installed a small machine called a Raspberry Pi computer in the stadium. He said his only requirements were that it needed to be able to plug into the internet and set up on a concrete floor. “Then it sits there and does its thing,” he said. “In fact, it probably does its thing right now.”

He then sent freshman student Sahil Tolia to some games to record the moments of spectator movement and celebration, so that these could be compared with the seismic activity that the Pi registers.

We’re not sure whether Professor van der Pluijm plans on releasing his findings to the outside world, or whether he’ll keep them a close secret with his introductory students, but we hope for the former!

Build your own Raspberry Pi seismic activity reader

We’re not sure what other technology van der Pluijm uses in conjunction with the Raspberry Pi, but it’s fairly easy to create your own seismic activity reader using our board. You can purchase the Raspberry Shake, an add-on board for the Pi that has vertical and horizontal geophones, MEMs accelerometers, and omnidirectional differential pressure transducers. Or you can fashion something at home, for example by taking hints from this project by Carlo Cristini, which uses household items to register movement.

The post I feel the earth move under my feet (in Michigan) appeared first on Raspberry Pi.

Google Tasks to-do list, or anti-baby-distraction device

via Raspberry Pi

Organise your life with the help of a Raspberry Pi, a 3.5″ touchscreen, Google Tasks, and hackster.io user Michal Sporna.

Distracting baby optional, though advised.

Google Tasks Raspberry Pi to-do list Michael Sporna

Baby – in the workplace – thought you ought to know

There’s a baby in the office today. And, as babies tend to do in places of work, he’s stolen all of our attention away from what we’re meant to be doing (our jobs), and has redirected it for the greater good (keeping him entertained). Oh, baby!

If only I had a to-do list to keep all my day’s tasks in plain sight and constantly remind myself of what I should be doing (writing this blog post) instead of what I’m actually doing (naming all the kittens on my T-shirt with the help of a nine-month-old)!

Hold on…

Sorry, the baby just came over to my desk and stole my attention again. Where was I?

Oh yes…

…to-do lists!

Michal Sporna‘s interactive to-do list that syncs with Google Tasks consists of a Raspberry Pi 3 Model B and a 3.5″ touchscreen encased in a laser-cut wooden housing, though this last element is optional.

Google Tasks Raspberry Pi to-do list Michael Sporna

“This is yet another web to-do app, but designed for a 3.5″ screen and Raspberry Pi,” says Michal in the introduction to his hackster.io tutorial. “The idea is for this device to serve as task tracking device, replacing a regular notebook and having to write stuff with pen.”

Michal explains that, while he enjoys writing down tasks on paper, editing items on paper isn’t that user-friendly. By replacing pen and paper with stylus and touchscreen, and making use Google Tasks, he improved the process for himself.

Google Tasks

The Google Tasks platform allows you to record and edit tasks, and to share them across multiple devices. The app integrates nicely with Gmail and Google Calendar, and its browser functionality allowed Michal to auto-run it on Chromium in Raspbian, so his tasks automatically display on the touchscreen. #NotSponsored

Google Tasks Raspberry Pi to-do list Michael Sporna

Build your own

Find full build details for the to-do list device on hackster.io! This is the first project Michal has shared on the website, and we’re looking forward to more makes from him in the future.

Now, where did that baby go?

The post Google Tasks to-do list, or anti-baby-distraction device appeared first on Raspberry Pi.

A waterproof Raspberry Pi?! Five 3D-printable projects to try

via Raspberry Pi

Summer is coming to a close. The evenings grow darker. So pack away your flip flops, hang up your beach towel, and settle in for the colder months with these fun 3D-printable projects to make at home or in your local makerspace.

Fallout 4 desktop terminal

Power Up Props’ replica of the Fallout desktop terminals fits a 3.5″ screen and a Raspberry Pi 3B. Any Fallout fans out there will be pleased to know that you don’t need to raise your Science level to hack into this terminal — you’ll just need access to a 3D printer and these free files from My Mini Factory.

Fallout 4 terminal 3d-printable raspberry pi case

And while you’re waiting for this to print, check out Power Up Props’ wall-mounted terminal!

Fallout 4 – Working Terminal (Raspberry Pi Version) – Power Up Props

Howdy neighbors, grab some fusion cores and put on your power armor because today we’re making a working replica of the wall mounted computer “terminals” from the Fallout series, powered by a Raspberry Pi! Want one of your very own terminals?

Falcon Heavy night light

Remixing DAKINGINDANORF‘s low-poly Arduino-based design, this 3D-printable night light is a replica of the SpaceX Falcon Heavy rocket. The replica uses a Raspberry Pi Zero and a Pimoroni Unicorn pHAT to create a rather lovely rocket launch effect. Perfect for the budding space explorer in your home!

Falcon Heavy night light

I 3D printed a SpaceX Falcon Heavy night light, with some nice effects like it’s actually launching. Useful? Hell no. Cool? Hell yes! Blogpost with files and code: https://www.dennisjanssen.be/tutorials/falcon-heavy-night-light/

You can download the files directly from Dennis Janssen’s website.

Swimming IoT satellite

We’re really excited about this design and already thinking about how we’ll use it for our own projects:

Floating Raspberry Pi case

Using an acrylic Christmas bauble and 3D-printed parts, you can set your Raspberry Pi Zero W free in local bodies of water — ideal for nature watching and citizen science experiments.

Art Deco clock and weather display

Channel your inner Jay Gatsby with this Art Deco-effect clock and weather display.

Art Deco Raspberry Pi Clock

Fitted with a Raspberry Pi Zero W and an Adafruit piTFT display, this build is ideally suited for any late-night cocktail parties you may have planned.

High-altitude rocket holder

Send four Raspberry Pi Zeros and Camera Modules into the skies with this holder design from Thingiverse user randysteck.

Raspberry Pi Zero rocket holder

The 3D-printable holder will keep your boards safe and sound while they simultaneously record photos or video of their airborne adventure.

More more more

What projects did we miss? Share your favourite 3D-printable designs for Raspberry Pis in the comments so we can see more builds from the internet’s very best community!

The post A waterproof Raspberry Pi?! Five 3D-printable projects to try appeared first on Raspberry Pi.