Tag Archives: Raspberry Pi 3B+

Raspberry Pi retro gaming on Reddit

via Raspberry Pi

Reddit was alive with the sound of retro gaming this weekend.

First out to bat is this lovely minimalist, wall-mounted design built by u/sturnus-vulgaris, who states:

I had planned on making a bar top arcade, but after I built the control panel, I kind of liked the simplicity. I mounted a frame of standard 2×4s cut with a miter saw. Might trim out in black eventually (I have several panels I already purchased), but I do like the look of wood.

Next up, a build with Lego bricks, because who doesn’t love Lego bricks?

Just completed my mini arcade cabinet that consists of approximately 1,000 [Lego bricks], a Raspberry Pi, a SNES style controller, Amazon Basics computer speakers, and a 3.5″ HDMI display.

u/RealMagicman03 shared the build here, so be sure to give them an upvote and leave a comment if, like us, you love Raspberry Pi projects that involve Lego bricks.

And lastly, this wonderful use of the Raspberry Pi Compute Module 3+, proving yet again how versatile the form factor can be.

CM3+Lite cartridge for GPi case. I made this cartridge for fun at first, and it works as all I expected. Now I can play more games l like on this lovely portable stuff. And CM3+ is as powerful as RPi3B+, I really like it.

Creator u/martinx72 goes into far more detail in their post, so be sure to check it out.

What other projects did you see this weekend? Share your links with us in the comments below.

The post Raspberry Pi retro gaming on Reddit appeared first on Raspberry Pi.

Musically synced car windscreen wipers using Raspberry Pi

via Raspberry Pi

Hey there! I’ve just come back from a two-week vacation, Liz and Helen are both off sick, and I’m not 100% sure I remember how to do my job.

So, while I figure out how to social media and word write, here’s this absolutely wonderful video from Ian Charnas, showing how he hacked his car windscreen wipers to sync with his stereo.

FINALLY! Wipers Sync to Music

In this video, I modify my car so the windshield wipers sync to the beat of whatever music I’m listening to. You can own this idea!

Ian will be auctioning off the intellectual property rights to his dancing wipers on eBay, will all proceeds going to a charity supporting young makers.

The post Musically synced car windscreen wipers using Raspberry Pi appeared first on Raspberry Pi.

Growth Monitor pi: an open monitoring system for plant science

via Raspberry Pi

Plant scientists and agronomists use growth chambers to provide consistent growing conditions for the plants they study. This reduces confounding variables – inconsistent temperature or light levels, for example – that could render the results of their experiments less meaningful. To make sure that conditions really are consistent both within and between growth chambers, which minimises experimental bias and ensures that experiments are reproducible, it’s helpful to monitor and record environmental variables in the chambers.

A neat grid of small leafy plants on a black plastic tray. Metal housing and tubing is visible to the sides.

Arabidopsis thaliana in a growth chamber on the International Space Station. Many experimental plants are less well monitored than these ones.
(“Arabidopsis thaliana plants […]” by Rawpixel Ltd (original by NASA) / CC BY 2.0)

In a recent paper in Applications in Plant Sciences, Brandin Grindstaff and colleagues at the universities of Missouri and Arizona describe how they developed Growth Monitor pi, or GMpi: an affordable growth chamber monitor that provides wider functionality than other devices. As well as sensing growth conditions, it sends the gathered data to cloud storage, captures images, and generates alerts to inform scientists when conditions drift outside of an acceptable range.

The authors emphasise – and we heartily agree – that you don’t need expertise with software and computing to build, use, and adapt a system like this. They’ve written a detailed protocol and made available all the necessary software for any researcher to build GMpi, and they note that commercial solutions with similar functionality range in price from $10,000 to $1,000,000 – something of an incentive to give the DIY approach a go.

GMpi uses a Raspberry Pi Model 3B+, to which are connected temperature-humidity and light sensors from our friends at Adafruit, as well as a Raspberry Pi Camera Module.

The team used open-source app Rclone to upload sensor data to a cloud service, choosing Google Drive since it’s available for free. To alert users when growing conditions fall outside of a set range, they use the incoming webhooks app to generate notifications in a Slack channel. Sensor operation, data gathering, and remote monitoring are supported by a combination of software that’s available for free from the open-source community and software the authors developed themselves. Their package GMPi_Pack is available on GitHub.

With a bill of materials amounting to something in the region of $200, GMpi is another excellent example of affordable, accessible, customisable open labware that’s available to researchers and students. If you want to find out how to build GMpi for your lab, or just for your greenhouse, Affordable remote monitoring of plant growth in facilities using Raspberry Pi computers by Brandin et al. is available on PubMed Central, and it includes appendices with clear and detailed set-up instructions for the whole system.

The post Growth Monitor pi: an open monitoring system for plant science appeared first on Raspberry Pi.

Raspberry Pi in space!

via Raspberry Pi

We love ‘Raspberry Pi + space’ stuff. There, I’ve said it. No taksies backsies.

From high-altitude balloon projects transporting Raspberry Pis to near space, to our two Astro Pi units living aboard the International Space Station, we simply can’t get enough.

Seriously, if you’ve created anything space-related using a Raspberry Pi, please tell us!

Capturing Earth from low orbit

Surrey Satellite Technology Ltd (SSTL) sent a Raspberry Pi Zero to space as part of their Demonstration of Technology (DoT-1) satellite, launched aboard a Soyuz rocket in July.

Earth captured from Low Earth Orbit by a Raspberry Pi

Subscribe to our YouTube channel: http://rpf.io/ytsub Help us reach a wider audience by translating our video content: http://rpf.io/yttranslate Buy a Raspberry Pi from one of our Approved Resellers: http://rpf.io/ytproducts Find out more about the #RaspberryPi Foundation: Raspberry Pi http://rpf.io/ytrpi Code Club UK http://rpf.io/ytccuk Code Club International http://rpf.io/ytcci CoderDojo http://rpf.io/ytcd Check out our free online training courses: http://rpf.io/ytfl Find your local Raspberry Jam event: http://rpf.io/ytjam Work through our free online projects: http://rpf.io/ytprojects Do you have a question about your Raspberry Pi?

So, not that we’re complaining, but why did they send the Raspberry Pi Zero to space to begin with? Well, why not? As SSTL state:

Whilst the primary objective of the 17.5kg self-funded DoT-1 satellite is to demonstrate SSTL’s new Core Data Handling System (Core-DHS), accommodation was made available for some additional experimental payloads including the Raspberry Pi camera experiment which was designed and implemented in conjunction with the Surrey Space Centre.

Essentially, if you can fit a Raspberry Pi into your satellite, you should.

Managing Director of SSTL Sarah Parker went on to say that “the success of the Raspberry Pi camera experiment is an added bonus which we can now evaluate for future missions where it could be utilised for spacecraft ‘selfies’ to check the operation of key equipments, and also for outreach activities.”

SSTL’s very snazzy-looking Demonstration of Technology (DoT-1) satellite

The onboard Raspberry Pi Zero was equipped with a Raspberry Pi Camera Module and a DesignSpark M12 Mount Lens. Image data captured on the space-bound Raspberry Pi was sent back to the SSTL ground station via the Core-DHS.

So, have you sent a Raspberry Pi to space? Or anywhere else we wouldn’t expect a Raspberry Pi to go? Let us know in the comments!

The post Raspberry Pi in space! appeared first on Raspberry Pi.

Controlling a boom lift with a Raspberry Pi

via Raspberry Pi

Do you have a spare Raspberry Pi lying around? And a Bluetooth games controller? Do you have access to boom lifts or other heavy machinery?

Well, then we most certainly (do not) have the project for you.

Allow us to introduce what is (possibly, probably, hopefully) the world’s first Raspberry Pi–controlled boom lift. Weighing in at 13,000lb, this is the epitome of DON’T try this at home.

Please don’t!

Raspberry Pi-controlled boom lift

Shared on Reddit over the weekend, u/Ccundiff12’s project received many an upvote and concerned comment, but, as the poster explains, hacking the boom is a personal project for personal use to fix a specific problem — thankfully not something built for the sake of having some fun.

Meet STRETCH. Circa 1989 Genie Boom that I bought (cheap) from a neighbor. I use it to trim trees around my property. Its biggest problem was that it always got stuck. It’s not really an off-road vehicle. It used to take two people to move it around… one to drive the lift, and the other to push it with the tractor when it lost traction. The last time it got stuck, I asked my wife to assist by driving one of the two…….. the next day I started splicing into the control system. Now I can push with the tractor & run the boom via remote!

Visit the original Reddit post for more information on the build. And remember: please do not try this at home.

The post Controlling a boom lift with a Raspberry Pi appeared first on Raspberry Pi.

Make a retro console with RetroPie and a Raspberry Pi — part 2

via Raspberry Pi

Here’s part two of Lucy Hattersley’s wonderful retro games console tutorial. Part 1 of the tutorial lives here, for those of you who missed it.

Choose the network locale

RetroPie boots into EmulationStation, which is your starter interface. It’s currently displaying just the one option, RetroPie, which is used to set up the emulation options. As you add games to RetroPie, other systems will appear in EmulationStation.

With RetroPie selected, press the A button on the gamepad to open the configuration window. Use the D-pad to move down the options and select WiFi. You will see a warning message: ‘You don’t currently have your WiFi country set…’. Press the D-pad left to choose Yes, and press A. The interface will open raspi-config. At this point, it’s handy to switch to the keyboard and use that instead.

Choose 4 Localisation Options, and press the right arrow key on the keyboard to highlight Select, then press Enter.

Now choose 4 Change Wi-fi Country and pick your country from the list. We used GB Britain (UK). Highlight OK and press Enter to select it.

Now move right twice to choose Finish and press Enter. This will reboot the system.

Connect to wireless LAN

If you have a Raspberry Pi with an Ethernet connection, you can use an Ethernet cable to connect directly to your router/modem or network.

More likely, you’ll connect the Raspberry Pi to a wireless LAN network so you can access it when it’s beneath your television.

Head back into RetroPie from EmulationStation and down to the WiFi setting; choose Connect to WiFi network.

The window will display a list of nearby wireless LAN networks. Choose your network and use the keyboard to enter the wireless LAN password. Press Enter when you’re done. Choose the Exit option to return to the RetroPie interface.

Configuration tools

Now choose RetroPie Setup and then Configuration Tools. Here, in the Choose an option window, you’ll find a range of useful tools. As we’re using a USB gamepad, we don’t need the Bluetooth settings, but it’s worth noting they’re here.

We want to turn on Samba so we can share files from our computer directly to RetroPie. Choose Samba and Install RetroPie Samba shares, then select OK.

Now choose Cancel to back up to the Choose an option window, and then Back to return to the RetroPie-Setup script.

Run the setup script

Choose Update RetroPie-Setup script and press Enter. After the script has updated, press Enter again and you’ll be back at the Notice: window. Press Enter and choose Basic install; press Enter, choose Yes, and press Enter again to begin the setup and run the configuration script.

When the script has finished, choose Perform a reboot and Yes.

Turn on Samba in Windows

We’re going to use Samba to copy a ROM file (a video game image) from our computer to RetroPie.

Samba used to be installed by default in Windows, but it has recently become an optional installation. In Windows 10, click on the Search bar and type ‘Control Panel’. Click on Control Panel in the search results.

Now click Programs and Turn Windows features on or off. Scroll down to find SMB 1.0/CIFS File Sharing Support and click the + expand icon to reveal its options. Place a check in the box marked SMB 1.0/CIFS Client. Click OK. This will enable Samba client support on your Windows 10 PC so it can access the Raspberry Pi.

We’ve got more information on how Samba works on The MagPi’s website.

Get the game

On your Windows PC or Mac, open a web browser, and visit the Blade Buster website. This is a homebrew video game designed by High Level Challenge for old NES systems. The developer’s website is in Japanese — just click BLADE BUSTER Download to save the ROM file to your Downloads folder.

Open a File Explorer (or Finder) window and locate the BB_20120301.zip file in your Downloads folder. Don’t unzip the file.

Click on Network and you’ll see a RETROPIE share. Open it and locate the roms folder. Double-click roms and you’ll see folders for many classic systems. Drag and drop the BB_20120301.zip file and place it inside the nes folder.

Play the game

Press the Start button on your gamepad to bring up the Main Menu. Choose Quit and Restart EmulationStation. You’ll now see a Nintendo Entertainment System option with 1 Games Available below it. Click it and you’ll see BB_20120301 — this is Blade Buster. Press A to start the game. Have fun shooting aliens. Press Start and Analog (or whatever you’ve set as your hotkey) together when you’re finished; this will take you back to the game selection in EmulationStation.

If you’ve been setting up RetroPie on your monitor, now is the time to move it across to your main television. The RetroPie console will boot automatically and connect to the network, and then you can move ROM files over to it from your PC or Mac. At this point, you may notice black borders around the screen; if so, see the Fix the borders tip.

Enjoy your gaming system!

More top tips from Lucy

Change the resolution

Some games were designed for a much lower resolution, and scaling them up can look blocky on modern televisions. If you’d prefer to alter the resolution, choose ‘RetroPie setup’. Open raspi-config, Advanced Options, and Resolution. Here you’ll find a range of other resolution options to choose from.

Fix the borders

These are caused by overscan. Choose RetroPie from EmulationStation and raspi-config. Now select Advanced Options > Overscan and select No on the ‘Would you like to enable compensation for displays with overscan?’ window. Choose OK and then Finish. Choose Yes on the Reboot Now window. When the system has rebooted, you will see the borders are gone.

The MagPi magazine issue 81

This article is from the latest issue of The MagPi magazine, which is out today and can be purchased online, at the Raspberry Pi Store, or from many newsagents and bookshops, such as WHSmith and Barnes & Noble.

The MagPi magazine issue 81

You can also download issue 81 for free from The MagPi website, where you’ll also find information on subscription options, and the complete MagPi catalogue, including Essentials guides and books, all available to download for free.

the MagPi subscription

The post Make a retro console with RetroPie and a Raspberry Pi — part 2 appeared first on Raspberry Pi.