Tag Archives: raspbian

Scratch 3 Desktop for Raspbian on Raspberry Pi

via Raspberry Pi

You can now install and use Scratch 3 Desktop for Raspbian on your Raspberry Pi!

Scratch 3

Scratch 3 was released in January this year, and since then we and the Scratch team have put lots of work into creating an offline version for Raspberry Pi.

The new version of Scratch has a significantly improved interface and better functionality compared to previous versions. These improvements come at the cost of needing more processing power to run. Luckily, Raspberry Pi 4 has delivered just that, and with the software improvements in the newest version of Raspbian, Buster, we can now deliver a reliable Scratch 3 experience on our computer.

Which Raspberry Pi can I use?

Scratch 3 needs at least 1GB of RAM to run, and we recommend a Raspberry Pi 4 with at least 2GB RAM. While you can run Scratch 3 on a Raspberry Pi 2, 3, 3B+, or a Raspberry 4 with 1GB RAM, performance on these models is reduced, and depending on what other software you run at the same time, Scratch 3 may fail to start due to lack of memory.

The Scratch team is working to reduce the memory requirements of Scratch 3, so we will hopefully see improvements to this soon.

How to install Scratch 3

You can only install Scratch 3 on Raspbian Buster.

First, update Raspbian!

  • If you’ve yet to upgrade to Raspbian Buster, we recommend installing a fresh version of Buster onto your SD card instead of upgrading from your current version of Raspbian.
  • If you’re already using Raspbian Buster, but you’re not sure your running the latest version, update Buster by following this tutorial:

How to update Raspbian on your Raspberry Pi

How to update to the latest version of Raspbian on your Raspberry Pi.

Once you’re running the latest version of Buster, you can install Scratch 3 either using the Recommended Software application or apt on the terminal.

How to install Scratch 3 using the Recommended Software app

Open up the menu, click on Preferences > Recommended Software, and then select Scratch 3 and click on OK.

How to install Scratch 3 using the terminal

Open a terminal window, and type in and run the following commands:

sudo apt-get update
sudo apt-get install scratch3

What can I do with Scratch 3 and Raspberry Pi?

Scratch 3 Desktop for Raspbian comes with new extensions to allow you to control the GPIO pins and Sense HAT with Scratch code!

GPIO extension

GPIO extension is a replacement for the existing extension in Scratch 2. Its layout and functionality is very similar, so you can use it as a drop-in replacement.

The GPIO extension gives you the flexibility to connect and control a whole host of electronic devices.

Simple Electronics extension

If you are looking to add something simple, like an LED or button controller for a game, you should find the new Simple Electronics extension easier to use than the GPIO extension. The Simple Electronics extension is the first version of a beginner-friendly extension for interacting with Raspberry Pi’s GPIO pins. Taking lessons from the implementation of gpiozero for Python, this new extension provides a simpler way of using electronic components: currently buttons and LEDs.

In this example, an LED connected to GPIO pin 17 is controlled by a button connected between pin 2 and GND.

Sense HAT extension

We’ve improved the Sense HAT extension to take advantage of new features in Scratch 3, and the updated version of the extension also introduces a number of new blocks to allow you to:

  • Sense tilting, shaking, and orientation
  • Use the joystick
  • Measure temperature, pressure, and humidity
  • Display text, characters, and patterns on the LED matrix

micro:bit and LEGO extensions

The micro:bit and LEGO extensions will become available later on Scratch 3 Desktop. This is because Scratch Link, the software which allows Scratch to talk to Bluetooth devices, is not yet available for Linux-type operating systems like Raspbian. A version of Scratch Link for Raspbian is part of our plans but, as yet, we don’t have a release date.

A round of thanks

It has been a long ambition of both the Scratch and Raspberry Pi teams to have Scratch 3 running on Raspberry Pi, and it’s amazing to see it released!

A big thank you to Raspberry Pi engineer Simon Long for building and packaging Scratch 3, and to the Scratch team for their support in getting over some of the problems we faced along the way.

The post Scratch 3 Desktop for Raspbian on Raspberry Pi appeared first on Raspberry Pi.

The last 10%: revamping the Raspberry Pi desktop

via Raspberry Pi

Simon Long is a Senior Principal Software Engineer here at Raspberry Pi. He’s responsible for the Raspberry Pi Desktop on both Raspbian and Debian, and his article from The MagPi issue 73 explores the experience of revamping our desktop. Get your copy of The MagPi in stores now, or download it as a free PDF here.

The PIXEL desktop on Raspberry Pi

It was almost exactly four years ago when I was offered the chance to work at Raspberry Pi. I knew all the team very well, but I’d had hardly any involvement with the Pi itself, and wasn’t all that sure what they would want me to do; at that time, I was working as the manager of a software team, with no experience of hardware design. Fortunately, this was when software had started to move up the list of priorities at Raspberry Pi.

The 2014 updated desktop

Eben and I sat down on my first day and played with the vanilla LXDE desktop environment in Raspbian for 15 minutes or so, and he then asked me the fateful question: “So — do you think you can make it better?” With rather more confidence than I felt, I replied: “Of course!” I then spent the next week wondering just how long it was going to take before I was found out to be an impostor and shown the door.

Simon Long Raspberry Pi

Simon Long, Senior Principal Software Impostor

UI experience

To be fair, user interface design was something of which I had a lot of experience — I spent the first ten years of my career designing and implementing the user interfaces for a wide range of products, from mobile phones to medical equipment, so I knew what a good user interface was like. I could even see what changes needed to be made to transform the LXDE environment into one. But I didn’t have a clue how to do it — I’d barely used Linux, never mind programmed for it… As I said above, that was four years ago, and I’ve been hacking the Pi desktop from that day on.

Raspberry Pi desktop circa 2015

Not all the changes I’ve made have been popular with everyone, but I think most people who use the desktop feel it has improved over that time. My one overriding aim has been to try to make the Pi desktop into a product that I actually want to use myself; one that takes the good user interface design principles that we are used to in environments like macOS and Windows — ideas like consistency, attractive fonts and icons, intuitive operation, everything behaving the way you expect without having to read the instructions — and sculpting the interface around them.

Final polish

In my experience, the main difference between the Linux desktop environment and those of its commercial competitors is the last 10%: the polishing you do once everything works. It’s not easy making something that works, and a lot of people, once they have created something and got it working, leave it and move onto creating something else. I’m really not great at creating things from scratch — and have nothing but admiration for those who are — but what I do enjoy doing is adding that last 10%: going from something that works to something that works well and is a pleasure to use. Being at Raspberry Pi means I get to do that every day when I come to work. Every time I see a photo of a Pi running at a Jam, or in a classroom, anywhere in the world, and it’s using my desktop — the thrill from that never goes away.

If you’d like to read more about the evolution of the Raspberry Pi desktop, and Simon’s adventures at Raspberry Pi, you can access the entire back catalogue of his blog posts here.

The post The last 10%: revamping the Raspberry Pi desktop appeared first on Raspberry Pi.

Mu, a new Python IDE for beginners

via Raspberry Pi

Mu is a very simple-to-use Python editor and IDE (integrated development environment) and this week, version 1.0 was released!

Mu Python IDE for beginners Raspberry Pi

New Mu

Mu is designed to be as user-friendly and as helpful as possible for new Python programmers, presenting just the tools that are useful, such as:

  • Syntax highlighting
  • Automatic indentation
  • In-built help
  • Code checking
  • Debugging

Great for new programmers

Mu is intended to be not the only Python IDE you’ll ever need, but the first one — the editor that helps you start your coding journey, but not necessarily the one you finish it with. So when you’re ready, you will have the skills and confidence to move on to using a more advanced Python IDE.

You can use Mu in a number of modes; modes make working with Mu easier by only presenting the options most relevant to what you’re using Mu for:

Mu Python IDE for beginners Raspberry Pi

Available now

Mu version 1.0 is available now for Windows, macOS, Linux, and the Raspberry Pi’s official operating system Raspbian! And to help new Python programmers get started, we have created a guide to Getting Started with Mu for all these operating systems.

Mu Python IDE for beginners Raspberry Pi

Mu is the brainchild of Nicholas Tollervey, who has worked tirelessly to create Mu. I recently met up with him and some of the Mu team at the world’s first Mu-“moot” to celebrate this release:

Nicholas Tollervey on Twitter

World’s first Mu-moot. :-(

One of the inspirations for Mu was the keynote presentation at EuroPython 2015 given by Raspberry Pi’s Carrie Anne Philbin. She talked about the barriers to children getting started with Python, including the lack of an suitably easy-to-use IDE:

Carrie Anne Philbin – Keynote: Designed for Education: A Python Solution

Carrie Anne Philbin – Keynote: Designed for Education: A Python Solution [EuroPython 2015] [23 July 2015] [Bilbao, Euskadi, Spain] The problem of introducing children to programming and computer science has seen growing attention in the past few years. Initiatives like Raspberry Pi, Code Club, code.org, (and many more) have been created to help solve this problem.

Raspberry Pi has provided support for the project, helping to take Mu from its first implementation as a micro:bit programming tool to a general-purpose and simple-to-use Python editor and IDE!

You can find installation instructions as well as tutorials on Mu’s website.

The post Mu, a new Python IDE for beginners appeared first on Raspberry Pi.

Raspbian update: first-boot setup wizard and more

via Raspberry Pi

After a few months of hiding in a dark corner of the office muttering to myself (just ask anyone who sits near me how much of that I do…), it’s time to release another update to the Raspberry Pi desktop with a few new bits and a bunch of bug fixes (hopefully more fixes than new bugs, anyway). So, what’s changed this time around?

Setup wizard

One of the things about Raspbian that has always been a bit unhelpful is that when a new user first boots up a new Pi, they see a nice desktop picture, but they might not have much of an idea what they ought to do next. With the new update, whenever a new Raspbian image is booted for the first time, a simple setup wizard runs automatically to walk you through the basic setup operations.

Localisation

The localisation settings you can access via the main Raspberry Pi Configuration application are fairly complex and involve making separate settings for location, keyboard, time zone, and WiFi country. The first page of the wizard should make this a little more straightforward — once you choose your country, the wizard will show you the languages and time zones used in that country. Once you’ve chosen yours, the wizard should take care of all the necessary international settings. This includes the WiFi country, which you need to set before you can use the wireless connectivity on a Raspberry Pi 3B+.

Raspbian update June 2018

There will be some special cases — e.g. expatriates using a Pi and wanting to set it to a language not spoken in their country of residence — where this wizard will not give sufficient flexibility. But we hope that for perhaps 90% of users, this one page will do everything necessary in terms of international settings. (The more detailed settings in Raspberry Pi Configuration will, of course, remain available.)

Other settings

The next pages in the wizard will walk you through changing your password, connecting to the internet, and performing an initial software update to make sure you get any patches and fixes that may have been released since your Raspbian image was created.

Raspbian update June 2018

On the last page, you will be prompted to reboot if necessary. Once you get to the end of the wizard, it will not reappear when the Pi is booted. (If you do want to use it again for some reason, just run it manually by typing

sudo piwiz

into a terminal window and pressing Enter.)

Recommended software

Over the last few years, several third-party companies have generously offered to provide software for Pi users, in some cases giving free licenses for software that normally requires a license fee. We’ve always included these applications in our standard image, as people might never find out about them otherwise, but the applications perhaps aren’t all of interest to every user.

So to try and keep the size of the image down, and to avoid cluttering the menus with applications that not everyone wants, we’ve introduced a Recommended Software program which you can find in the Preferences menu.

Raspbian update June 2018

Think of this as our version of the Apple App Store, but with everything in it available for free! Installing a program is easy: just put a tick in the box to the right, and click “OK”. You can also uninstall some of the preinstalled programs: just untick the respective box and click “OK”. You can even reinstall them once you’ve realised you didn’t mean to uninstall them: just tick the box again and click — oh, you get the idea…

As we find new software that we recommend, or as more manufacturers offer us programs, we’ll add them to Recommended Software, so it’ll be kept up to date.

New PDF viewer

Ever since the first version, Raspbian has included the venerable PDF viewer Xpdf. While this program does work, it’s fairly old and clunky, and we’ve been trying to find something better.

In this release, we are replacing Xpdf with a program called qpdfView, which is a much-improved PDF viewer. It has a more modern user interface, it renders pages faster, and it preloads and caches future pages while you’re reading, which should mean fewer pauses spent waiting for the next page to load.

Raspbian update June 2018

If you want something to read in it, we are now including the latest issue of The MagPi as a PDF file — look in the ‘MagPi’ directory in your home directory ‘pi’.

Other updates

The Chromium browser is now at version 65. We’ve also updated the links to our website in the Help menu, and added a new Getting Started option. This links to some really helpful new pages that walk you through getting your Pi up and running and using some of its key features.

If you have volume up/down buttons on your keyboard, these will now control whatever audio output device is selected, rather than only controlling the internal audio hardware. The resolution has also been increased: each button push increases or decreases the volume by 5% rather than 10%.

If you are using the network icon to reconnect to a wireless network, the passcode for the network will be shown in the connection dialog, so you won’t have to type it in again.

In Raspberry Pi Configuration, you can now enable and disable the serial port console independently of the serial port hardware.

The keyboard layout setting dialogue now makes settings that should be correct both in the desktop and also when the Pi is booted to console.

There are various other small bug fixes and tweaks to appearance and behaviour, but they’re mostly only the sort of things you’d spot if you’re a slightly obsessive user interface developer…

How do I get it?

The new image is available for download from the usual place: our Downloads page. We’ve also updated the x86 image with most of the changes, and that’s up on the page as well.

To update an existing image, use the usual terminal command:

sudo apt-get update
sudi apt-get dist-upgrade

Here’s a quick video run-through of the process:

Updating Raspbian on your Raspberry Pi || Raspberry Pi Foundation

How to update to the latest version of Raspbian on your Raspberry Pi.

To install the new PDF viewer (and remove the old one):

sudo apt-get install qpdfview
sudo apt-get purge xpdf

To install the new Recommended Software program:

sudo apt-get install rp-prefapps

Finally, to install the setup wizard (which really isn’t necessary on an existing image, but just in case you are curious…):

sudo apt-get install piwiz

We hope you like the changes — as ever, all feedback is welcome, so please leave a comment below!

The post Raspbian update: first-boot setup wizard and more appeared first on Raspberry Pi.

Build a house in Minecraft using Python

via Raspberry Pi

In this tutorial from The MagPi issue 68, Steve Martin takes us through the process of house-building in Minecraft Pi. Get your copy of The MagPi in stores now, or download it as a free PDF here.

Minecraft Pi is provided for free as part of the Raspbian operating system. To start your Minecraft: Pi Edition adventures, try our free tutorial Getting started with Minecraft.

Minecraft Raspberry Pi

Writing programs that create things in Minecraft is not only a great way to learn how to code, but it also means that you have a program that you can run again and again to make as many copies of your Minecraft design as you want. You never need to worry about your creation being destroyed by your brother or sister ever again — simply rerun your program and get it back! Whilst it might take a little longer to write the program than to build one house, once it’s finished you can build as many houses as you want.

Co-ordinates in Minecraft

Let’s start with a review of the coordinate system that Minecraft uses to know where to place blocks. If you are already familiar with this, you can skip to the next section. Otherwise, read on.

Minecraft Raspberry Pi Edition

Plan view of our house design

Minecraft shows us a three-dimensional (3D) view of the world. Imagine that the room you are in is the Minecraft world and you want to describe your location within that room. You can do so with three numbers, as follows:

  • How far across the room are you? As you move from side to side, you change this number. We can consider this value to be our X coordinate.
  • How high off the ground are you? If you are upstairs, or if you jump, this value increases. We can consider this value to be our Y coordinate.
  • How far into the room are you? As you walk forwards or backwards, you change this number. We can consider this value to be our Z coordinate.

You might have done graphs in school with X going across the page and Y going up the page. Coordinates in Minecraft are very similar, except that we have an extra value, Z, for our third dimension. Don’t worry if this still seems a little confusing: once we start to build our house, you will see how these three dimensions work in Minecraft.

Designing our house

It is a good idea to start with a rough design for our house. This will help us to work out the values for the coordinates when we are adding doors and windows to our house. You don’t have to plan every detail of your house right away. It is always fun to enhance it once you have got the basic design written. The image above shows the plan view of the house design that we will be creating in this tutorial. Note that because this is a plan view, it only shows the X and Z co-ordinates; we can’t see how high anything is. Hopefully, you can imagine the house extending up from the screen.

We will build our house close to where the Minecraft player is standing. This a good idea when creating something in Minecraft with Python, as it saves us from having to walk around the Minecraft world to try to find our creation.

Starting our program

Type in the code as you work through this tutorial. You can use any editor you like; we would suggest either Python 3 (IDLE) or Thonny Python IDE, both of which you can find on the Raspberry Pi menu under Programming. Start by selecting the File menu and creating a new file. Save the file with a name of your choice; it must end with .py so that the Raspberry Pi knows that it is a Python program.

It is important to enter the code exactly as it is shown in the listing. Pay particular attention to both the spelling and capitalisation (upper- or lower-case letters) used. You may find that when you run your program the first time, it doesn’t work. This is very common and just means there’s a small error somewhere. The error message will give you a clue about where the error is.

It is good practice to start all of your Python programs with the first line shown in our listing. All other lines that start with a # are comments. These are ignored by Python, but they are a good way to remind us what the program is doing.

The two lines starting with from tell Python about the Minecraft API; this is a code library that our program will be using to talk to Minecraft. The line starting mc = creates a connection between our Python program and the game. Then we get the player’s location broken down into three variables: x, y, and z.

Building the shell of our house

To help us build our house, we define three variables that specify its width, height, and depth. Defining these variables makes it easy for us to change the size of our house later; it also makes the code easier to understand when we are setting the co-ordinates of the Minecraft bricks. For now, we suggest that you use the same values that we have; you can go back and change them once the house is complete and you want to alter its design.

It’s now time to start placing some bricks. We create the shell of our house with just two lines of code! These lines of code each use the setBlocks command to create a complete block of bricks. This function takes the following arguments:

setBlocks(x1, y1, z1, x2, y2, z2, block-id, data)

x1, y1, and z1 are the coordinates of one corner of the block of bricks that we want to create; x1, y1, and z1 are the coordinates of the other corner. The block-id is the type of block that we want to use. Some blocks require another value called data; we will see this being used later, but you can ignore it for now.

We have to work out the values that we need to use in place of x1, y1, z1, x1, y1, z1 for our walls. Note that what we want is a larger outer block made of bricks and that is filled with a slightly smaller block of air blocks. Yes, in Minecraft even air is actually just another type of block.

Once you have typed in the two lines that create the shell of your house, you almost ready to run your program. Before doing so, you must have Minecraft running and displaying the contents of your world. Do not have a world loaded with things that you have created, as they may get destroyed by the house that we are building. Go to a clear area in the Minecraft world before running the program. When you run your program, check for any errors in the ‘console’ window and fix them, repeatedly running the code again until you’ve corrected all the errors.

You should see a block of bricks now, as shown above. You may have to turn the player around in the Minecraft world before you can see your house.

Adding the floor and door

Now, let’s make our house a bit more interesting! Add the lines for the floor and door. Note that the floor extends beyond the boundary of the wall of the house; can you see how we achieve this?

Hint: look closely at how we calculate the x and z attributes as compared to when we created the house shell above. Also note that we use a value of y-1 to create the floor below our feet.

Minecraft doors are two blocks high, so we have to create them in two parts. This is where we have to use the data argument. A value of 0 is used for the lower half of the door, and a value of 8 is used for the upper half (the part with the windows in it). These values will create an open door. If we add 4 to each of these values, a closed door will be created.

Before you run your program again, move to a new location in Minecraft to build the house away from the previous one. Then run it to check that the floor and door are created; you will need to fix any errors again. Even if your program runs without errors, check that the floor and door are positioned correctly. If they aren’t, then you will need to check the arguments so setBlock and setBlocks are exactly as shown in the listing.

Adding windows

Hopefully you will agree that your house is beginning to take shape! Now let’s add some windows. Looking at the plan for our house, we can see that there is a window on each side; see if you can follow along. Add the four lines of code, one for each window.

Now you can move to yet another location and run the program again; you should have a window on each side of the house. Our house is starting to look pretty good!

Adding a roof

The final stage is to add a roof to the house. To do this we are going to use wooden stairs. We will do this inside a loop so that if you change the width of your house, more layers are added to the roof. Enter the rest of the code. Be careful with the indentation: I recommend using spaces and avoiding the use of tabs. After the if statement, you need to indent the code even further. Each indentation level needs four spaces, so below the line with if on it, you will need eight spaces.

Since some of these code lines are lengthy and indented a lot, you may well find that the text wraps around as you reach the right-hand side of your editor window — don’t worry about this. You will have to be careful to get those indents right, however.

Now move somewhere new in your world and run the complete program. Iron out any last bugs, then admire your house! Does it look how you expect? Can you make it better?

Customising your house

Now you can start to customise your house. It is a good idea to use Save As in the menu to save a new version of your program. Then you can keep different designs, or refer back to your previous program if you get to a point where you don’t understand why your new one doesn’t work.

Consider these changes:

  • Change the size of your house. Are you able also to move the door and windows so they stay in proportion?
  • Change the materials used for the house. An ice house placed in an area of snow would look really cool!
  • Add a back door to your house. Or make the front door a double-width door!

We hope that you have enjoyed writing this program to build a house. Now you can easily add a house to your Minecraft world whenever you want to by simply running this program.

Get the complete code for this project here.

Continue your Minecraft journey

Minecraft Pi’s programmable interface is an ideal platform for learning Python. If you’d like to try more of our free tutorials, check out:

You may also enjoy Martin O’Hanlon’s and David Whale’s Adventures in Minecraft, and the Hacking and Making in Minecraft MagPi Essentials guide, which you can download for free or buy in print here.

The post Build a house in Minecraft using Python appeared first on Raspberry Pi.

Raspbian update: supporting different screen sizes

via Raspberry Pi

You may have noticed that we released a updated Raspbian software image yesterday. While the main reason for the new image was to provide support for the new Raspberry Pi 3 Model B+, the image also includes, alongside the usual set of bug fixes and minor tweaks, one significant chunk of new functionality that is worth pointing out.

Updating Raspbian on your Raspberry Pi

How to update to the latest version of Raspbian on your Raspberry Pi.

Compatibility

As a software developer, one of the most awkward things to deal with is what is known as platform fragmentation: having to write code that works on all the different devices and configurations people use. In my spare time, I write applications for iOS, and this has become increasingly painful over the last few years. When I wrote my first iPhone application, it only had to work on the original iPhone, but nowadays any iOS application has to work across several models of iPhone and iPad (which all have different processors and screens), and also across the various releases of iOS. And that’s before you start to consider making your code run on Android as well…

Screenshot of clean Raspbian desktop

The good thing about developing for Raspberry Pi is that there is only a relatively small number of different models of Pi hardware. We try our best to make sure that, wherever possible, the Raspberry Pi Desktop software works on every model of Pi ever sold, and we’ve managed to do this for most of the software in the image. The only exceptions are some of the more recent applications like Chromium, which won’t run on the older ARM6 processors in the Pi 1 and the Pi Zero, and some applications that run very slowly due to needing more memory than the older platforms have.

Raspbian with different screen resolutions

But there is one area where we have no control over the hardware, and that is screen resolution. The HDMI port on the Pi supports a wide range of resolutions, and when you include the composite port and display connector as well, people can be using the desktop  on a huge number of different screen sizes.

Supporting a range of screen sizes is harder than you might think. One problem is that the Linux desktop environment is made up of a large selection of bits of software from various different developers, and not all of these support resizing. And the bits of software that do support resizing don’t all do it in the same way, so making everything resize at once can be awkward.

This is why one of the first things I did when I first started working on the desktop was to create the Appearance Settings application in order to bring a lot of the settings for things like font and icon sizes into one place. This avoids users having to tweak several configuration files whenever they wanted to change something.

Screenshot of appearance settings application in Raspbian

The Appearance Settings application was a good place to start regarding support of different screen sizes. One of the features I originally included was a button to set everything to a default value. This was really a default setting for screens of an average size, and the resulting defaults would not have worked that well on much smaller or much larger screens. Now, there is no longer a single defaults button, but a new Defaults tab with multiple options:

Screenshot of appearance settings application in Raspbian

These three options adjust font size, icon size, and various other settings to values which ought to work well on screens with a high or low resolution. (The For medium screens option has the same effect as the previous defaults button.) The results will not be perfect in all circumstances and for all applications — as mentioned above, there are many different components used to create the desktop, and some of them don’t provide any way of resizing what they draw. But using these options should set the most important parts of the desktop and installed applications, such as icons, fonts, and toolbars, to a suitable size.

Pixel doubling

We’ve added one other option for supporting high resolution screens. At the bottom of the System tab in the Raspberry Pi Configuration application, there is now an option for pixel doubling:

Screenshot of configuration application in Raspbian

We included this option to facilitate the use of the x86 version of Raspbian with ultra-high-resolution screens that have very small pixels, such as Apple’s Retina displays. When running our desktop on one of these, the tininess of the pixels made everything too small for comfortable use.

Enabling pixel doubling simply draws every pixel in the desktop as a 2×2 block of pixels on the screen, making everything exactly twice the size and resulting in a usable desktop on, for example, a MacBook Pro’s Retina display. We’ve included the option on the version of the desktop for the Pi as well, because we know that some people use their Pi with large-screen HDMI TVs.

As pixel doubling magnifies everything on the screen by a factor of two, it’s also a useful option for people with visual impairments.

How to update

As mentioned above, neither of these new functionalities is a perfect solution to dealing with different screen sizes, but we hope they will make life slightly easier for you if you’re trying to run the desktop on a small or large screen. The features are included in the new image we have just released to support the Pi 3B+. If you want to add them to your existing image, the standard upgrade from apt will do so. As shown in the video above, you can just open a terminal window and enter the following to update Raspbian:

sudo apt-get update
sudo apt-get dist-upgrade

As always, your feedback, either in comments here or on the forums, is very welcome.

The post Raspbian update: supporting different screen sizes appeared first on Raspberry Pi.