Tag Archives: sensors

Machine learning for the maker community

via Arduino Blog

mellis-aday

At Arduino Day, I talked about a project I and my collaborators have been working on to bring machine learning to the maker community. Machine learning is a technique for teaching software to recognize patterns using data, e.g. for recognizing spam emails or recommending related products. Our ESP (Example-based Sensor Predictions) software recognizes patterns in real-time sensor data, like gestures made with an accelerometer or sounds recorded by a microphone. The machine learning algorithms that power this pattern recognition are specified in Arduino-like code, while the recording and tuning of example sensor data is done in an interactive graphical interface. We’re working on building up a library of code examples for different applications so that Arduino users can easily apply machine learning to a broad range of problems.

The project is a part of my research at the University of California, Berkeley and is being done in collaboration with Ben Zhang, Audrey Leung, and my advisor Björn Hartmann. We’re building on the Gesture Recognition Toolkit (GRT) and openFrameworks. The software is still rough (and Mac only for now) but we’d welcome your feedback. Installations instructions are on our GitHub project page. Please report issues on GitHub.

Our project is part of a broader wave of projects aimed at helping electronics hobbyists make more sophisticated use of sensors in their interactive projects. Also building on the GRT is ml-lib, a machine learning toolkit for Max and Pure Data. Another project in a similar vein is the Wekinator, which is featured in a free online course on machine learning for musicians and artists. Rebecca Fiebrink, the creator of Wekinator, recently participated in a panel on machine learning in the arts and taught a workshop (with Phoenix Perry) at Resonate ’16. For non-real time applications, many people use scikit-learn, a set of Python tools. There’s also a wide range of related research from the academic community, which we survey on our project wiki.

For a high-level overview, check out this visual introduction to machine learning. For a thorough introduction, there are courses on machine learning from coursera and from udacity, among others. If you’re interested in a more arts- and design-focused approach, check out alt-AI, happening in NYC next month.

If you’d like to start experimenting with machine learning and sensors, an excellent place to get started is the built-in accelerometer and gyroscope on the Arduino or Genuino 101. With our ESP system, you can use these sensors to detect gestures and incorporate them into your interactive projects!

OpenGarage, an Open-source WiFi garage door opener

via Dangerous Prototypes

Ray Wang has published a new project called OpenGarage, an open-source garage door opener based on ESP8266 and the Blynk app:

Today I am very excited to introduce you to OpenGarage — an open-source, universal garage door opener built using the ESP8266 WiFi chip and the Blynk app. I’ve wanted to finish this project for a while, as there have been multiple occasions where I left the house in a hurry and forgot to close my garage door, or locked myself out of the house, or had to let a friend or handyman in while I was away. Having a WiFi-based garage door opener (which I can access remotely using my mobile phone) would be super convenient. Recently as I started learning about ESP8266, I found it to be the perfect platform to help me complete this project.

Project info at Rayshobby.net.

A DIY wearable posture sensor

via Dangerous Prototypes

IMG_6986-600

Want to improve your posture? This wearable posture sensor from Coretech Robotics will remind you whenever you slouch and help you maintain a good posture:

Posture sensors/monitors have been a recurring theme on this blog. They are supposed to remind you of your posture and prevent you from slouching, which can be a cause for back pain and headaches.While my previous sensors were either fixed to a chair or desk, this time I wanted to create a wearable version, that would allow for free movement. As always, one of the main goals was to make this project cheap and easy to reproduce.

Project info at Coretech Robotics site.

‘Magic tree’ project

via Dangerous Prototypes

TREE-ORGAN-PROTOTYPE

Dilshan Jayakody has published a new build, a ‘Musical trees’:

“Musical trees” is a part of creative arts installation and this project is capable to produce different audio tones by detecting human touch to its attached plants. Existing version of this driver is capable to monitor 8 plants and produce different sounds for each plant.
This project is build around PIC16F628A 8-bit microcontroller and PT2399 echo processor IC. To drive the sensor electrodes we use pair of CD4011 quad 2-input NAND gate ICs. This prototype use TDA7052 1W audio amplifier IC to drive the speaker(s).

More details at Jayakody’s blog.

Check out the video after the break.


Monitor your Bonsai with the help of Arduino Uno

via Arduino Blog

BonsaiWatchdog

Bonsai trees are not like other plants. There’s no single watering schedule that can be applied to a bonsai and the best way to tell if the bonsai needs water is to touch the soil. Experienced growers know when a tree needs to be watered by observing the foliage or just by the weight of the pot. If you are not used to taking care of this type of tree, Bonsai Watchdog could be the perfect project for you. It runs on Arduino and Genuino Uno and makes it really easy to monitor the moisture level in the soil.

BonsaiWatchdogDisplay

Thomas Baum, created it and shared it some days ago on the Arduino Community on G+ :

Two pencil leads, an Arduino and a 12864 (ST7565) LCD watches out my little bonsai. The filling level shows how often the sapling need to be watered.
source and discription (in german) you can find here:
http://tiny.systems/categorie/lcdProjekt/BonsaiWatchdog.html

 

INA219 current sensor DIY Breakout board

via Dangerous Prototypes

23577455661_4c48a0beca_z

INA219 current sensor DIY Breakout board project from Juan Ignacio:

Another small board, this time for a INA219. The INA219 is a high-side current shunt and power monitor with an I2C interface.
For testing I used Rei VILO library with a MSP430G2553 and Energia, and I measured the power consumption for this simple circuit.

Project info at ssihla homepage.