Tag Archives: The MagPi

El Carrillon | The MagPi 92

via Raspberry Pi

Most Raspberry Pi projects we feature debut privately and with little fanfare – at least until they’re shared by us.

The El Carrillon project, however, could hardly have made a more public entrance. In September 2019 it was a focal point of Argentina’s 49th annual Fiesta Nacional de la Flor (National Flower Festival), where its newly overhauled bell tower proudly rang out a brand-new, Raspberry Pi-enabled tune.

Many years ago, festival organisers created custom hardware with a PIC (programmable interface) microcontroller to control 18 tuned bells. Each bell is associated with a musical note, from A3 to D5 with all the semitones. Until its long overdue update, the tower’s 18 bells had rung the tune to Ayer, also known as Yesterday by The Beatles. They now have a brand-new repertoire of MIDI-based tunes, including the theme from Star Wars.

For Gerardo Richarte, the originator of the project, there was a little extra pressure: his dad is on the board of the NGO that organises Fiesta Nacional de la Flor, and challenged his son to come up with a way to update the bells so different songs could be played.

Ringing the changes

With the challenge accepted, Mariano Martinez Peck explains, “We chose Raspberry Pi because it was inexpensive, yet powerful enough to run Linux, Python, and VA Smalltalk. We could find ready-made HATs that actually matched the pinout of the existing flat cables without much hacking, and only a minimal amount of other hardware was needed. In addition, there was plenty of documentation, materials, tutorials, and GPIO libraries available.”

The bells had a pre-existing driver module

The project aim was to be able to run a mobile-friendly website within Raspberry Pi Zero that allowed control, configuration, and playback of MIDI songs on the bell tower. “In addition, we wanted to allow live playing from a MIDI keyboard,” says Mariano. The project developed as a live test and iteration update, but the final build only came together when Mariano and Gerardo’s moment in the spotlight arrived and El Carrillon rang out the first new tunes.

Coding a classic

The decades-old chimes were controlled by assembly code. This was superseded by Python when the team made the switch to Raspberry Pi Zero. Mariano explains, “Raspberry Pi allowed us to use Python to directly interface with both the old and new hardware and get the initial project working.”

However, the Python code was itself replaced by object-oriented VA Smalltalk code – an environment both Mariano and Gerardo are adept at using. Mariano says, “Smalltalk’s live programming environment works really well for fast, iterative development and makes software updates quick and easy without the need for recompilation that lower-level languages [such as assembly or C/C++] would need.”

El Carrillon’s bells can now play any MIDI file on Raspberry Pi, and the notes of the song will be mapped to the tuned bells. However, as the testing process revealed, some songs are more recognisable than others when reproduced on chimes.

A final feature enabled Gerardo to bag some brownie points with his father-in-law. He recently added a web interface for controlling, configuring, and playing songs, meaning the bells can now be controlled remotely and the song selected via a smartphone app.

The El Carrillon bell tower forms a striking backdrop to the flower festival and other cultural events

Read The MagPi for free!

Find more amazing projects and tutorials in The MagPi #92, out now! You can get The MagPi #92 online at our store, or in print from all good newsagents and supermarkets. You can also access The MagPi magazine via our Android and iOS apps.

Don’t forget our fantastic subscription offers, which include a free gift of a Raspberry Pi Zero W when you subscribe for twelve months.

And, as with all our Raspberry Pi Press publications, you can download the free PDF from our website.

The post El Carrillon | The MagPi 92 appeared first on Raspberry Pi.

The MagPi 91: #MonthOfMaking is back for 2020!

via Raspberry Pi

If you read The MagPi, it’s safe to say you like making in some way. The hobby has exploded in popularity over the last few years, thanks in no small part to a burgeoning online community and the introduction of low-cost computing with Raspberry Pi.

Last year we decided to celebrate making with a month-long online event called #MonthOfMaking. The idea was simply to get people to share what they’re making online, whatever it was. Whether you’re turning on your first LED with code or sending rockets to the moon, we want to create a space where you can share your proud achievements. So, let’s get making.

What is #MonthOfMaking?

#MonthOfMaking is simply an excuse to get people inspired to make something. And by make, we mean electronics, engineering, art, and craft projects. Get your creative powers buzzing and make something that you can show to the world.

There’s no skill-level threshold to participating either. If you’ve been wanting to start learning, this can be your jumping-on point. By sharing your builds with the community, you can learn and grow. Here are some simple rules to sum it all up:

  1. Find a new project, continue with one you’re working on, or finally crack on with something you’ve been putting off.
  2. Take pictures of your build progress and share it online with the hashtag #MonthOfMaking.
  3. If you can help someone with a problem, give them a hand.
  4. Have fun!

Getting ideas and inspiration

We’ve all been there. Sat down at a work bench or desk, staring at some components and thinking… what can I make with this? What would I like to make? Like any other creative pursuit, you’ll need some inspiration. If the projects in the magazine haven’t inspired you, then here are some website suggestions…

Instructables

Instructables is one of the oldest sites out there for finding amazing project guides and ideas, and we’ve been fans of it for years. The best part is you can search by specific project types as well, including Raspberry Pi if you’d like to keep it on‑brand. They’ve recently added more arts and crafts stuff if you fancy trying your hand at knitting.

Hackaday and Hackster

For more serious hacks for more advanced makers, Hackaday and Hackster have some great projects that really take a deep dive into a project. If you’re curious as to the limits of electronics and programming, these may be the place to look. Equally, if you want to do something huge with a lot of computer power, they should be your first stop.

Raspberry Pi projects

There are so many amazing things on the Raspberry Pi projects site that can help you with your first steps in just about any field of making. It’s also home to loads of great and simple home-grown projects that are perfect for young makers and older makers alike.

Planning your build

Step 01 Read and understand

Basing your build on a tutorial you’ve seen? Seen a few things you’d like to combine into something else? Always make sure to read the instructions you’ve found properly so that you know if it’s within your skill level.

Step 02 Order supplies
Write a list of what you need. Always double‑check you have the component you think you have. Sometimes you may need to buy from separate places, so just make sure the delivery times work for you.

Step 03 Follow along and be safe

Need adult supervision for a project? Absolutely get some. Even adults need to be wary, so always take safety precautions and wear protective clothing when needed. Make sure to follow any tutorials you’ve found as closely as you can.

Read The MagPi for free!

The rest of our #MonthOfMaking guide, along with loads more amazing projects and tutorials, can be found in The MagPi #91, out today, including our starter electronics guide! You can get The MagPi #91 online at our store, or in print from the Raspberry Pi Store in Cambridge and all good newsagents and supermarkets. You can also access The MagPi magazine via our Android and iOS apps.

We have a new US subscription offer!

Don’t forget our amazing subscription offers, which include a free gift of a Raspberry Pi Zero W when you subscribe for twelve months. Until the end of March, you can get a twelve-month subscription in the US for only $60! Head to magpi.cc/usa to find out more.

And, as with all our Raspberry Pi Press publications, you can download the free PDF from our website.

The post The MagPi 91: #MonthOfMaking is back for 2020! appeared first on Raspberry Pi.

USA magazine subscriptions offer: 48% off standard prices

via Raspberry Pi

Today we’re launching a time-limited special offer on subscriptions to HackSpace magazine and The MagPi magazine for readers in the USA, saving you a whopping 48% compared to standard overseas subscriptions. We want to help as many people as possible get their hands on our fantastic publications.

Starting today, you can subscribe to these magazines for the discounted price of $60 a year – just $5 per issue. Not only will you receive twelve issues direct to your door, but you’ll also receive a free gift and save up to 35% compared with newsstand prices!

You’ll need to be quick – this discounted offer is only running until 31 March 2020.

HackSpace magazine

HackSpace magazine is packed with projects for fixers and tinkerers of all abilities. We’ll teach you new techniques and give you refreshers on familiar ones, from 3D printing, laser cutting, and woodworking to electronics and the Internet of Things. HackSpace magazine will inspire you to dream bigger and build better.

Your $60 subscription will get you twelve issues per year and a free Adafruit Circuit Playground Express, worth $25. Click here to subscribe today!

The MagPi magazine

The MagPi is the official Raspberry Pi magazine. Written by and for the community, it’s packed with Raspberry Pi-themed projects, computing and electronics tutorials, how-to guides, and the latest news and reviews.

Your $60 subscription will get you twelve issues per year and a free Raspberry Pi Zero W with accessories. Click here to subscribe today!

The post USA magazine subscriptions offer: 48% off standard prices appeared first on Raspberry Pi.

Free Raspberry Pi 4 cooling stand with The MagPi 90!

via Raspberry Pi

In issue 88 of The MagPi, we discovered that Raspberry Pi 4 can be kept cooler than usual if placed on its side. This gave us an idea, and thanks to many Top People, it resulted in the small, simple, and very practical Raspberry Pi 4 stand that you will find on the cover of all physical copies of The MagPi 90.

Content Warning

No Description

To complement this gift, we also got heat tester extraordinaire Gareth Halfacree to put the stand and several cooling cases through their paces to see just how well they can keep Raspberry Pi 4 nice and cool.

The stand also has an extra benefit: you can place three Raspberry Pis in it at once! A good idea if you plan to do a little cluster computing with a few Raspberry Pi 4s.

Mirror, mirror, on the wall…

While the Raspberry Pi 4 stand is a pretty big deal all by itself, issue 90 of The MagPi also includes a guide to building the ultimate smart mirror — including a bit of voice control!

While a magic mirror may not show you who the fairest of them all is (I can answer that question for you: it’s me), our guide will definitely show you the easiest way to set up your own magic mirror. It’ll be straightforward, thanks to the complete step-by-step tutorial we’ve put together for you.

Projects and more!

Feeling the urge to make something new with Raspberry Pi? Then take a look at our amazing selection of project showcases, and at a feature of some easy starter projects to help you get inspired. All this, along with our usual selection of reviews, tutorials, and community news, in The MagPi 90!

Get The MagPi 90 today

You can get The MagPi issue 90 online in our store with international delivery available, or from the Raspberry Pi Store in Cambridge and all good newsagents and supermarkets. You can also access The MagPi magazine via our Android and iOS apps.

The stand is available with print copies of the magazine

Don’t forget our amazing subscription offers either, which include a gift of a Raspberry Pi Zero W when you subscribe for twelve months.

And, as with all our Raspberry Pi publications, you can download this issue as a free PDF from our website.

The post Free Raspberry Pi 4 cooling stand with The MagPi 90! appeared first on Raspberry Pi.

Design 3D prints with a Raspberry Pi and BlocksCAD

via Raspberry Pi

BlocksCAD is a 3D model editor that you use in a web browser, and it runs on Raspberry Pi. You drag and drop code blocks to design 3D models that can be exported for 3D printing.

In this project, you will use BlocksCAD to design a 3D pendant. The pendant uses a geometric pattern based on ‘the flower of life’, a design which is often found in historical art.

The finished pendant with a cord threaded through the small hanging hoop

If you have access to a 3D printer, then you can print your pendant. The pendant is small and only uses a little bit of filament. There’s a hoop on top of the pendant so that you can put it on a necklace or cord. The pendant has a diameter of 40 mm, plus the hoop for hanging. It is 2 mm thick, so it will 3D-print quite quickly.

After this project, you’ll also be able to code your own design and create a custom pendant.

Step 01: create a hoop

This project can be completed in a web browser using BlocksCAD. Open Chromium and enter the BlocksCAD editor URL: blockscad3d.com/editor.

The design uses six interlocking hoops in the centre, and a larger hoop around the outside. As mentioned, the pendant is 40 mm wide, plus the hoop for hanging, which is 2 mm thick.

Click 3D Shapes and drag a cylinder block to the project. Create a cylinder with a radius of 12, and a height of 2 (the unit here is millimetres). Cylinders are automatically centred along the X and Y axes. Select not centered so that the pendant sits on the surface. (This means that the Z-axis value is greater than 0.)

Click on the Render button after each change to your code to see the results.

Step 02: add more hoops

Now, drag a difference block from Set Ops to encase the cylinder. Add another cylinder block in the bottom space, and this time give it a radius of 11 mm. This will remove a smaller cylinder from the centre. This creates a hoop. Click Render again to see it.

If you like, you can click on the coloured square to change the colour used in the viewer. This does not affect the colour of your pendant, as that depends on the colour of the filament that you use.

The design uses six intersecting hoops, and each hoop is moved out from the centre and rotated a different number of degrees.

In the final design, there is no central hoop: the hoops are all moved out from the centre.

Drag a translate block (from Transforms) around your code, and set X and Y to 5. This moves the first hoop into position.

Step 03: centre the hoop

Now the hoop is a little off-centre. You need multiple copies of this hoop, rotated around the centre. First, create three equally spaced hoops.

Add a count Loops block to create three hoops. To space the hoops, add a rotate Transforms block between the count loop and the translate block.

In the count block, set the i variable from 1 to 3. You’ll need to insert an arithmetic block from Math and a variable (i) block from Variables into the Z field of the rotate block.

The rotation moves each hoop by 120 × i degrees, so that the three hoops are distributed equally around the 360 degrees of a circle (360 / 3 = 120). Look at the code and make sure you understand how it works. The finished design has six hoops rather than three. In the count block, set i from 1 to 6, and set the Z rotation to 60, so it creates six equally spaced hoops.

Step 04: add a border

Next, add a border around the edge of the design. Create a centred hoop that touches the edges of the design. You can either do the maths to work out what the radius of the circle needs to be, or you can just create a circle and change the radius until it works. Either approach is fine!

Encase your code with a union block from Set Ops, to join the border to the other hoops. Add a difference block to the plus section of union, and two cylinder blocks to make the hoop.

The six hoops each have a radius of 12 mm, so the border cylinder that you are making needs to be bigger than that. You could try setting the radius to 24 mm.

To make a hoop, the radius of the second cylinder in the difference block needs to be 1 mm smaller than the radius of the first cylinder.

Adjust the size of the cylinders until the border hoop just touches the outer edges of the six inner hoops.

The radius should be around 20 mm. (As mentioned in the introduction, the finished pendant will be 40 mm in diameter.)

Step 05: work it out

You could also use maths to work out the diameter. The diameter of each inner hoop is 24 mm. If the hoops met at the centre of the pendant, the border hoop would need to have a radius of 24 mm. But the inner hoops overlap, as they are translated 5 mm along the X and Y axes.

This removes a section from the radius. This section is on the arc, 5 mm from the origin, so we need to remove 5 mm from 24 mm. Thus the inner radius of the border hoop should be 19 mm.

Maths is really useful when you need to be accurate. But it’s fine to just change things until you get the result you need.

Step 06: add a hanging hoop

Now, add a small hanging hoop through which you can thread a cord to make a necklace.

Click the [+] on the union block to add another section to add the new hoop.

At the moment, the position of the hanging hoop isn’t very visually pleasing.

Add a rotate block to move the inner hoops so that the hanging hoop is centred over one of the gaps between them.

Step 07: experiment with shapes

Experiment and change some values in your pendant. For example, change the number of hoops, or the rotation.

You could also try to use cuboids (cubes) instead of cylinders to create a pattern.

Step 08: export to STL

BlocksCAD 3D can export an STL file for 3D printing. Render your model and then click on Generate STL. Remember where you save the STL file. Now 3D-print your pendant using a filament of the colour of your choice. Very carefully remove the 3D print from the print bed. The pendant is thin, so it’s quite delicate.

You might need to remove small strands of filament (especially from the hanging hoop) to tidy up the print.

Thread the pendant on to a chain or cord. If you want to use a thicker cord or necklace, then you can adjust the design to have a larger hanging hoop.

Check your code

You can download the full code and check it against your own. You can also check out our projects page, where you’ll find more images and step-by-step instructions for using BlocksCAD.

This project was created by Dr Tracy Gardner and the above article was featured in this month’s issue of The MagPi magazine. Get your copy of The MagPi magazine issue 89 today from your local newsagent, the Raspberry Pi Store, Cambridge, or online from Raspberry Pi Press.

The post Design 3D prints with a Raspberry Pi and BlocksCAD appeared first on Raspberry Pi.

Hands-free Raspberry Pi Airdrum | The MagPi 89

via Raspberry Pi

We’re always going to beat the drum for projects that seek to improve the lives of people with disabilities. That’s why we fell in love with the Airdrum, which was created to allow anyone, in particular people with disabilities, to play a musical instrument.

The Airdrum – speaker and MIDI song demo

This video demonstrates the speaker functionality with playing a song from a midi file on the Raspberry pi using Fluidsynth. (The hand movement is just for fun) The Airdrum is powered by a power supply for demonstration purposes.

Raspberry Pi Airdrum

Designed by two Dutch electrical engineering students, Alessandro Verdiesen and Luuk van Kuijk, the project came to life during their first year at university. “We aimed to develop a musical instrument that could be used to generate music by moving,” explains Alessandro, who has recently been working on a fully modular version 2.0.

After speaking with therapists and health care institutions, the pair decided to make a drum that could be played by moving objects above a set of panels and they put Raspberry Pi at its heart. “The basic functionality of the Airdrum is to detect the distance of an object above each connected panel and play a sound,” says Alessandro. “These panels contain IR distance sensors and coloured LEDs for visual feedback.”

Sorting the bass-ics

From the outset, Alessandro and Luuk needed their project to be accessible, affordable, adjustable and, in the latest iteration, modular, with each drummable section containing an Arduino Mini, an IR sensor, and LEDs. They also wanted the instrument to have a broader appeal and be suitable for everybody, including professional musicians, so it had to sound as good as it played.

“We needed it to be as versatile as it can be and allow people to choose custom sounds, colours, and lights while being a standalone instrument and a multi-purpose input/output device,” Alessandro reveals. To make it easy to place the modules together, they used magnetic connections between the panels. This allowed them to be placed together in various configurations, with a minimum of two per Airdrum.

These speaker modules can bookend the sensor panels, although the sound can be outputted via the Raspberry Pi to a different sound system too

With a structured plan that divided milestones into electrical, mechanical, and software components, the pair used 3D printing for the enclosure, which allowed rapid prototyping for quick interactions. They used speaker panels to bookend the modules for auditive feedback.

Panel beating

Each of the panels includes a buck converter so that the current through the connectors can be drawn to a minimum. The master module panel contains Raspberry Pi 3 running custom programs written in C and Python, as well as the free, open-source software synthesiser FluidSynth. It connects to the other panels through I2C, constantly polling the panels for their measurements and for the configuration of their colour.

“If an object has been detected, the Raspberry Pi generates a sound and outputs it on the AUX audio jack,” says Alessandro. “This output is then used by the mono D-class amplifiers in the speaker panels to make the tones audible.”

Custom-made Airdrum detecting modules fit snugly into their 3D-printed cases and can be arranged in a full circle if you have enough of them

The pair chose Raspberry Pi because of its versatility and technical prowess. “The Airdrum needed something powerful enough to run software to generate audio through MIDI using the input from the panels and the Raspberry Pi is a great universal and low-cost development board with integrated DAC for audio,” explains Alessandro. “It also has a I2C bus to act as a data transfer master unit and they’re compact enough to fit inside of the casing. The Raspberry Pi enables easy implementation of future upgrades, too.”

Indeed, the pair want to explore the MIDI possibilities and connect the Airdrum with a smartphone or tablet. An app is being planned, as is a built-in synthesiser. “The people we have shown the Airdrum to have been very enthusiastic,” Alessandro says. “That has been very motivating.”

Read The MagPi for free!

There’s loads more amazing projects and tutorials in The MagPi #89, out today, including our 50 tools and tips for makers, and a huge accessory guide! You can get The MagPi #89 online at our store, or in print from the Raspberry Pi Store in Cambridge and all good newsagents and supermarkets. You can also access The MagPi magazine via our Android and iOS apps.

Don’t forget our amazing subscription offers either, which include a free gift of a Raspberry Pi Zero W when you subscribe for twelve months.

And, as with all our Raspberry Pi publications, you can download the free PDF from our website.

The post Hands-free Raspberry Pi Airdrum | The MagPi 89 appeared first on Raspberry Pi.