Tag Archives: Third-Party Products

Website hosting on Raspberry Pi 4 with Mythic Beasts

via Raspberry Pi

Here’s Mythic Beast’s Pete Stevens to talk about how we run the Raspberry Pi website on Raspberry Pis, and how Mythic Beasts can run your site on Raspberry Pis too!

Rent a Raspberry Pi

In late 2016, Mythic Beasts launched a Raspberry Pi cloud, allowing you to rent a Raspberry Pi 3 as a service.

Raspberry Pi 4 is a much more capable computer, with more than twice the performance and, crucially, four times the memory. We were so excited by it, we bet Eben Upton a beer that we could host the launch site for Raspberry Pi 4 on Raspberry Pi 4. We’d demonstrated that it was just about possible to run a normal day on a cluster of eight Raspberry Pi 3s, but launch day is a bit more exciting — tens of millions rather than a million visitors.

Eben, being a fool supremely confident in the work that his team had done, took the bet and let us. On Thursday 20 June 2019, he dropped off eighteen 4GB RAM Raspberry Pi 4 computers that had previously been used in testing. We set about configuring them to replace all the web servers that run the Raspberry Pi blog.

  • 14× Dynamic Web server (PHP/Apache)
  • 2× Static webserver (Apache, flat files)
  • 2× Memcache (in memory store to accelerate web serving)

We started the build on Friday 21 June. We immediately ran into our first ‘chicken and egg’ problem. The Raspberry Pi web servers are built from Puppet, based (at the time) on Debian Jessie. Raspberry Pi 4’s release OS was a not-yet-released version of Debian Buster, which at the time wasn’t supported by Puppet. In conjunction with Greg Annandale at the Raspberry Pi Foundation, we created a Puppet build that would run on Raspberry Pi 4, updated the configuration from Jessie to Buster (newer Apache/PHP), and did some testing.

A rack of Raspberry Pis and a mess of wires connecting them
The enclosures were built to accommodate a larger PoE HAT, which is why this doesn’t stand up beautifully neatly.

We have pre-built enclosures from our Raspberry Pi 3 cloud. We followed the same approach using Power over Ethernet to provide power and data to each Raspberry Pi 4. This dramatically reduces the cabling and complexity of the setup. Late on Friday 21, just over 24 hours after we started, we moved the hastily constructed Raspberry Pi 4 setup to Sovereign House, a key Mythic Beasts data centre and one of the best-connected buildings in Europe.

Over the course of a few hours, we gradually moved the entire production load from the existing virtual servers to the Raspberry Pi 4 cloud and every page from the blog was being served directly off Raspberry Pi 4. We left it for two days to bed in before the real test: launch day.

The launch was almost perfectly smooth. The Raspberry Pi cluster coped fine with the tens of millions of users. However, the Raspberry Pi cluster and website is fronted by Cloudflare, which provides acceleration for static resources and protects the site from denial of service. Unfortunately, they had a two-hour outage in the middle of the launch thanks to a misconfigured internet optimiser run by a customer of Verizon. So the Raspberry Pi 4 cluster had a long lunch break wondering where all the users had gone.

We ran the website on the Raspberry Pi 4 cluster for over a month before reverting back to the usual virtual server-based environment. We’d proved that RaspberryPi 4 would make an awesome hosting platform.

Commercialising Raspberry Pi 4 as a service

We were already running Raspberry Pi 3 as a service for many customers (e.g. PiWheels, which builds Python packages for Raspberry Pi), and being able spin up Raspberry Pi 3 on demand is incredibly useful.

At launch, Raspberry Pi 4 wasn’t suitable. We rely on network boot in order to be able to remotely re-image Raspberry Pi. SD cards just aren’t very reliable; visiting the data centre for manual intervention on every SD card failure is not only expensive in time, but also means we’d have to maintain physical access to every Raspberry Pi 4 in our cloud. Netboot means that we just build large enclosures of 108 Raspberry Pis and seal them in, as they will never require physical attention. If one fails — and we’ve not yet seen one fail — we can shut it down and take it out of our database.

For Raspberry Pi 4 we had to wait for network booting to be a reality. We had access to beta firmware in November 2019 and built a sample Raspberry Pi 4 network boot setup. We then had to integrate it into our management code, build Raspberry Pi 4–compatible operating system images, and enhance our billing to cope with multiple models and by-the-hour billing. Then we had to do a file server and network upgrade: serving lots of machines with true gigabit needs more ‘oomph’ than the 100Mbps of Raspberry Pi 3. This also all needed to be backward-compatible so as not to break the existing Raspberry Pi 3 users. On 17 June 2020 we launched, and Raspberry Pi 4 is now ready to order in our cloud.

Is it any good?

Yes. Raspberry Pi is twice as fast as the same-sized instances in AWS, for a quarter of the price. Just see for yourself:

Raspberry Pi 4a1.largemg6.medium
Spec4 cores @ 1.5GHz
4GB RAM
2 cores
4GB RAM
1 core
4GB RAM
Monthly price£8.63$45.35
(~£36.09)
$34.69
(~ £27.61)
Requests per second1075257
Mean requests per second457ms978ms868ms
99th percentile request time791ms1247ms1056ms

But what about 8GB and 64-bit Raspberry Pi OS?

That sounds like a jolly nice idea. Keep watching the Mythic Beasts blog for updates.

The post Website hosting on Raspberry Pi 4 with Mythic Beasts appeared first on Raspberry Pi.

OpenVX API for Raspberry Pi

via Raspberry Pi

Raspberry Pi is excited to bring the Khronos OpenVX 1.3 API to our line of single-board computers. Here’s Kiriti Nagesh Gowda, AMD‘s MTS Software Development Engineer, to tell you more.

OpenVX for computer vision

OpenVX™ is an open, royalty-free API standard for cross-platform acceleration of computer vision applications developed by The Khronos Group. The Khronos Group is an open industry consortium of more than 150 leading hardware and software companies creating advanced, royalty-free acceleration standards for 3D graphics, augmented and virtual reality, vision, and machine learning. Khronos standards include Vulkan®, OpenCL™, SYCL™, OpenVX™, NNEF™, and many others.

Now with added Raspberry Pi

The Khronos Group and Raspberry Pi have come together to work on an open-source implementation of OpenVX™ 1.3, which passes the conformance on Raspberry Pi. The open-source implementation passes the Vision, Enhanced Vision, & Neural Net conformance profiles specified in OpenVX 1.3 on Raspberry Pi.

Application developers may always freely use Khronos standards when they are available on the target system. To enable companies to test their products for conformance, Khronos has established an Adopters Program for each standard. This helps to ensure that Khronos standards are consistently implemented by multiple vendors to create a reliable platform for developers. Conformant products also enjoy protection from the Khronos IP Framework, ensuring that Khronos members will not assert their IP essential to the specification against the implementation.

OpenVX enables a performance and power-optimized computer vision processing, especially important in embedded and real-time use cases such as face, body, and gesture tracking, smart video surveillance, advanced driver assistance systems (ADAS), object and scene reconstruction, augmented reality, visual inspection, robotics, and more. The developers can take advantage of using this robust API in their application and know that the application is portable across all the conformant hardware.

Below, we will go over how to build and install the open-source OpenVX 1.3 library on Raspberry Pi 4 Model B. We will run the conformance for the Vision, Enhanced Vision, & Neural Net conformance profiles and create a simple computer vision application to get started with OpenVX on Raspberry Pi.

OpenVX 1.3 implementation for Raspberry Pi

The OpenVX 1.3 implementation is available on GitHub. To build and install the library, follow the instructions below.

Build OpenVX 1.3 on Raspberry Pi

Git clone the project with the recursive flag to get submodules:

git clone --recursive https://github.com/KhronosGroup/OpenVX-sample-impl.git

Note: The API Documents and Conformance Test Suite are set as submodules in the sample implementation project.

Use the Build.py script to build and install OpenVX 1.3:

cd OpenVX-sample-impl/
python Build.py --os=Linux --venum --conf=Debug --conf_vision --enh_vision --conf_nn

Build and run the conformance:

export OPENVX_DIR=$(pwd)/install/Linux/x32/Debug
export VX_TEST_DATA_PATH=$(pwd)/cts/test_data/
mkdir build-cts
cd build-cts
cmake -DOPENVX_INCLUDES=$OPENVX_DIR/include -DOPENVX_LIBRARIES=$OPENVX_DIR/bin/libopenvx.so\;$OPENVX_DIR/bin/libvxu.so\;pthread\;dl\;m\;rt -DOPENVX_CONFORMANCE_VISION=ON -DOPENVX_USE_ENHANCED_VISION=ON -DOPENVX_CONFORMANCE_NEURAL_NETWORKS=ON ../cts/
cmake --build .
LD_LIBRARY_PATH=./lib ./bin/vx_test_conformance

Sample application

Use the open-source samples on GitHub to test the installation.

The post OpenVX API for Raspberry Pi appeared first on Raspberry Pi.

OctoPrint: a baby monitor for your 3D printer

via Raspberry Pi

In issue 32 of HackSpace magazine, out now, we talk to Gina Häußge, creator of OctoPrint – it sits on a Raspberry pi and monitors your 3D printer.

Gina Häußge, creator and maintainer of OctoPrint

There’s something enchanting about watching a 3D printer lay down hot plastic. Seeing an object take shape before your eyes is utterly compelling, which is perhaps why we love watching 3D printing time-lapse videos so much.

Despite this, it would be impractical and inefficient to sit and watch every time you sent a print job through. That’s why we should all be grateful for OctoPrint. This free, open-source software monitors your 3D printer for you, keeping you from wasting plastic and ensuring that you can go about your business without fearing for your latest build.
OctoPrint is the creation of Gina Haüßge. We enjoyed a socially distant chat with her about the challenges of running an open-source project, making, and what it’s like to have a small project become huge.

HackSpace: Most people who have used a 3D printer will have heard of OctoPrint, but for the benefit of those who haven’t, what is it?

Gina Haüßge: Somebody once called it a baby monitor for your 3D printer. I really like this description. It’s pretty much a combination of a baby monitor and a remote control, because it allows you to go through any web browser on your network and monitor what your printer is currently up to, how much the current job has progressed. If you have a webcam set up, it can show you the print itself, so you can see that everything is working correctly, it’s still on the bed, and all that.

It also offers a plug-in interface so that it can be expanded with various features and functionality, and people have written a ton of integrations with notification systems. And all of this runs on pretty much any system that runs Python. I have to say Python, not MicroPython, the full version. Usually Linux, and the most common use case is to run it on a Raspberry Pi, and this is also how I originally set it out to work.

Most people think it only runs on a Raspberry Pi, but no. It will run on any old laptop that you still have lying around. It’s cross-platform, so you don’t need to buy a Raspberry Pi if you have another machine that will fit the bill.

OctoPrint is most commonly run on a Raspberry Pi

HS: How long have you been working on it?

GH: I originally sat down to write it over my Christmas break in 2012, because I had got my first 3D printer back then. It was sitting in my office producing fumes and noise for hours on end, which was annoying when trying to work, or game, or anything else.

I thought there must be a solution involving attaching one of these nifty new Raspberry Pis that had just come out. Someone must have written something, right? I browsed around the internet, realised that the closest thing to what I was looking for treated the printer as a black box – to fire job data at it and hope that it gets it right. That was not what I wanted; I wanted this feedback channel. I wanted to see what was happening; I wanted to monitor the temperatures; I wanted to monitor the job progress.

The very first version back then was a plug-in for Cura, before Cura even supported plug-ins. After my Christmas break, I went, OK, it’s doing everything I wanted it to do; back to work at my normal regular job. And then it exploded. I started getting emails, issue reports, and feature requests from all over the world. ‘Can you make it also do this?’ ‘Hey, I have this other printer with this slightly different firmware that behaves like this; can you adapt it so that it works with this?’. ‘Can you remove it from Cura, and have it so it works standalone?’ Suddenly I had this huge open-source project on my hands. I didn’t do any kind of promotion for it or anything like that. I just posted about it in a Google+ community, of all things, and from there it grew by word of mouth.

A year or so later, I reduced my regular job to 80%, to have one day a week for OctoPrint, but that didn’t suffice either with everything that was going on. Then I had the opportunity to go full-time, sponsored by a single company who also made 3D printers, and they ran out of money in 2016. That was when I turned to crowdfunding, which has been the mode of operation ever since. Around 95% of everything that is done on OctoPrint is run by me, and I work on it full-time now. Since 2014.

A lot of the stuff that I have been adding over the years, for instance, the plug-in system itself, would not have been possible as a pet side project, not with a day job.

HS: What are you working on at the moment?

GH: In March just gone, I released the next big version, to make OctoPrint Python 3-compatible, because at the start of the year Python was deemed end of life, so I had to do something. The problem is that there’s a flourishing plug-in ecosystem written in Python 2, so for now, I’m stuck with having to support both, and trying to motivate the plug-in maintainers to also migrate, which is a ton of fun actually. I wrote a migration guide, tracking in the plug-in repository how many plugs are compatible. Newly registered plug-ins have to be compatible too.

HS: Do you have any idea how many people use OctoPrint?

GH: Nine months, a year ago, I introduced usage tracking. It’s my own bundled plug-in that ships with OctoPrint that does anonymous user tracking through my own platform, so no GDPR issues should arise there. And what this shows me is that, over the course of the last seven days, I saw 66,000 instances, and the last 30 days, I saw 91,000 instances.

But that’s only those who have opted into the usage tracking, which obviously is only a fraction. I have no idea about the fraction – whether the real number is five times, ten times higher, I’ve no way of knowing.

When I did the most recent big update, I got some statistics back from piwheels [a Python package repository]. They saw a spike in repositories that were being pulled from their index, which corresponded to dependencies that the new version of OctoPrint depends on, and the spike that they saw corresponded with the day that I rolled out the new version. Based on that, it looks like there’s probably ten times as many instances out there. I didn’t expect that. So the total number of users could be 700,000, it could be over a million, I have no idea. But based on these piwheels stats, it’s in that ballpark.

HS: And are you seeing a growth in those figures?

GH: Yes. Especially now, with the pandemic going on. If you had asked me three or four months ago, just when the pandemic started, I would have told you more like 60,000 per 30 days. So I saw a significant increase. I also saw a significant usage increase in the last couple of weeks.

I also saw a significant increase in support overheads in the last couple of weeks, which was absolutely insane. It was like everyone and their mother wanted to know something from me, writing me emails, opening tickets and all that, and this influx of people has not stopped yet. At first I thought, well I’ll just go into crunch mode and weather this out, but that didn’t work out. I had to find new ways to cope in order to keep this sustainable.

HS: You can’t have crunch mode for three months!

GH: I mean it’s OK for four weeks or so, but then you start to notice side effects on your own well-being. It’s not a good idea. I’m in for the long haul.

HS: Wanting a feedback channel instead of just firing off commands that work silently makes a lot of sense.

GH: It’s not like a paper printer where you fire and forget, so treating it as a black box, where you don’t get anything back on status and all that, is bound to be trouble. This is a complicated machine where a lot of stuff can go wrong, so it makes sense to have a feedback channel — at least that was my intuition back then, and evidently, a lot of people thought the same.

HS: You must have saved people countless hours and hours of wasted time, filament, and energy.

GH: I’ve also heard that I’ve saved at least one marriage! Someone wrote me an email a couple of years ago thanking me because the person had a new printer in their garage and was constantly monitoring it, sitting in front of it. Apparently the wife and kids were not too thrilled by this. They installed OctoPrint, and since then they’ve been happy again.

Get HackSpace magazine issue 31 — out today

HackSpace magazine issue 32: on sale now!

You can read the rest of HackSpace magazine’s interview with Gina Häußge in issue 32, out today and available online from the Raspberry Pi Press online store. You can also download issue 32 for free.

The post OctoPrint: a baby monitor for your 3D printer appeared first on Raspberry Pi.

Raspberry Pi puts the heart back in mid-noughties nostalgia tech

via Raspberry Pi

Is it still the Easter holidays? Can anyone tell? Does it matter, when we have nostalgic tech bunny pets to share with you?

These little bunnies can now do much more than when they first appeared. But they’re still incredibly cute – just look at that little lopsided-ear thing they do.

The original Nabaztag bunnies were to us in the mid-noughties what Tamagotchis were to eleven-year-olds everywhere in the 1990s. They communicated through colour, light, and sound. But now (and here’s the best bit), with a simple bit of surgery and the help of a new Raspberry Pi heart, your digital desk pet will be smarter than ever. It will be able to tell you what the weather is like, and offer local speech recognition as well as “ear-based Tai Chi”. No, we’re not sure either, but we are sure that it sounds cool. And very calming.

Part of the custom kit that will breathe new life into your bunny

The design team have created what they call the TagTagTag kit. Here are the main components of said kit:

This new venture had its first outing at the Paris Maker Faire in 2018, and it looks like we’re already too late to buy one of the limited number of ready-made upgraded bunnies. However, those of you who kept hold of your original bunny might be able to source one of Nabaztag’s custom boards to upgrade it yourself if you’re prepared to be patient – head over to the project’s funding page. You’ll also need a Raspberry Pi Zero W and a microSD card. The video below is in French, but it’s captioned.

Nabaztag’s funding page also shares all of the tech specs, schematics, and open source Python code you’re going to need.

We know this might be a tricky project for which to source all the parts, but it’s just. So. Cute. Follow the rabbit on Twitter to find out when you might be able to get your hands on a custom board.

The post Raspberry Pi puts the heart back in mid-noughties nostalgia tech appeared first on Raspberry Pi.

How to set up OctoPrint on your Raspberry Pi

via Raspberry Pi

If you own a 3D printer, you’ll likely have at least heard of OctoPrint from the ever benevolent 3D printing online community. It has the potential to transform your 3D printing workflow for the better, and it’s very easy to set up. This guide will take you through the setup process step by step, and give you some handy tips along the way.

Octoprint

Before we start finding out how to install OctoPrint, let’s look at why you might want to. OctoPrint is a piece of open-source software that allows us to add WiFi functionality to any 3D printer with a USB port (which is pretty much all of them). More specifically, you’ll be able to drop files from your computer onto your printer, start/stop prints, monitor your printer via a live video feed, control the motors, control the temperature, and more, all from your web browser. Of course, with great power comes great responsibility — 3D printers have parts that are hot enough to cause fires, so make sure you have a safe setup, which may include not letting it run unsupervised.

OctoPrint ingredients

• Raspberry Pi 3 (or newer)
MicroSD card
• Raspberry Pi power adapter
• USB cable (the connector type will depend on your printer)
• Webcam/Raspberry Pi Camera Module (optional)
• 3D-printed camera mount (optional)

Before we get started, it is not recommended that anything less than a Raspberry Pi 3 is used for this project. There have been reports of limited success using OctoPrint on a Raspberry Pi Zero W, but only if you have no intention of using a camera to monitor your prints. If you want to try this with a Pi Zero or an older Raspberry Pi, you may experience unexpected print failures.

Download OctoPi

Firstly, you will need to download the latest version of OctoPi from the OctoPrint website. OctoPi is a Raspbian distribution that comes with OctoPrint, video streaming software, and CuraEngine for slicing models on your Raspberry Pi. When this has finished downloading, unzip the file and put the resulting IMG file somewhere handy.

Next, we need to flash this image onto our microSD card. We recommend using Etcher to do this, due to its minimal UI and ease of use; plus it’s also available to use on both Windows and Mac. Get it here: balena.io/etcher. When Etcher is installed and running, you’ll see the UI displayed. Simply click the Select Image button and find the IMG file you unzipped earlier. Next, put your microSD card into your computer and select it in the middle column of the Etcher interface.

Finally, click on Flash!, and while the image is being burned onto the card, get your WiFi router details, as you’ll need them for the next step.

Now that you have your operating system, you’ll want to add your WiFi details so that the Raspberry Pi can automatically connect to your network after it’s booted. To do this, remove the microSD card from your computer (Etcher will have ‘ejected’ the card after it has finished burning the image onto it) and then plug it back in again. Navigate to the microSD card on your computer — it should now be called boot — and open the file called octopi-wpa-supplicant.txt. Editing this file using WordPad or TextEdit can cause formatting issues; we recommend using Notepad++ to update this file, but there are instructions within the file itself to mitigate formatting issues if you do choose to use another text editor. Find the section that begins ## WPA/WPA2 secured and remove the hash signs from the four lines below this one to uncomment them. Finally, replace the SSID value and the PSK value with the name and password for your WiFi network, respectively (keeping the quotation marks). See the example below for how this should look.

Further down in the file, there is a section for what country you are in. If you are using OctoPrint in the UK, leave this as is (by default, the UK is selected). However, if you wish to change this, simply comment the UK line again by adding a # before it, and uncomment whichever country you are setting up OctoPrint in. The example below shows how the file will look if you are setting this up for use in the US:

# Uncomment the country your Pi is in to activate Wifi in RaspberryPi 3 B+ and above
# For full list see: https://en.wikipedia.org/ wiki/ISO_3166-1_alpha-2
#country=GB # United Kingdom
#country=CA # Canada
#country=DE # Germany
#country=FR # France
country=US # United States

When the changes have been made, save the file and then eject/unmount and remove the microSD card from your computer and put it into your Raspberry Pi. Plug the power supply in, and go and make a cup of tea while it boots up for the first time (this may take around ten minutes). Make sure the Raspberry Pi is running as expected (i.e. check that the green status LED is flashing intermittently). If you’re using macOS, visit octopi.local in your browser of choice. If you’re using Windows, you can find OctoPrint by clicking on the Network tab in the sidebar. It should be called OctoPrint instance on octopi – double-clicking on this will open the OctoPrint dashboard in your browser.

If you see the screen shown above, then congratulations! You have set up OctoPrint.

Not seeing that OctoPrint splash screen? Fear not, you are not the first. While a full list of issues is beyond the scope of this article, common issues include: double-checking your WiFi details are entered correctly in the octopi-wpa-supplicant.txt file, ensuring your Raspberry Pi is working correctly (plug the Raspberry Pi into a monitor and watch what happens during boot), or your Raspberry Pi may be out of range of your WiFi router. There’s a detailed list of troubleshooting suggestions on the OctoPrint website.

Printing with OctoPrint

We now have the opportunity to set up OctoPrint for our printer using the handy wizard. Most of this is very straightforward — setting up a password, signing up to send anonymous usage stats, etc. — but there are a few sections which require a little more thought.

We recommend enabling the connectivity check and the plug-ins blacklist to help keep things nice and stable. If you plan on using OctoPrint as your slicer as well as a monitoring tool, then you can use this step to import a Cura profile. However, we recommend skipping this step as it’s much quicker (and you can use a slicer of your choice) to slice the model on your computer, and then send the finished G-code over.

Finally, we need to put in our printer details. Above, we’ve included some of the specs of the Creality Ender-3 as an example. If you can’t find the exact details of your printer, a quick web search should show what you need for this section.

The General tab can have anything in it, it’s just an identifier for your own use. Print bed & build volume should be easy to find out — if not, you can measure your print bed and find out the position of the origin by looking at your Cura printer profile. Leave Axes as default; for the Hotend and extruder section, defaults are almost certainly fine here (unless you’ve changed your nozzle; 0.4 is the default diameter for most consumer printers).

OctoPrint is better with a camera

Now that you’re set up with OctoPrint, you’re ready to start printing. Turn off your Raspberry Pi, then plug it into your 3D printer. After it has booted up, open OctoPrint again in your browser and take your newly WiFi-enabled printer for a spin by clicking the Connect button. After it has connected, you’ll be able to set the hot end and bed temperature, then watch as the real-time readings are updated.

In the Control tab, we can see the camera stream (if you’re using one) and the motor controls, as well as commands to home the axes. There’s a G-code file viewer to look through a cross-section of the currently loaded model, and a terminal to send custom G-code commands to your printer. The last tab is for making time-lapses; however, there is a plug-in available to help with this process.

Undoubtedly the easiest way to set up video monitoring of your prints is to use the official Raspberry Pi Camera Module. There are dozens of awesome mounts on Thingiverse for a Raspberry Pi Camera Module, to allow you to get the best angle of your models as they print. There are also some awesome OctoPrint-themed Raspberry Pi cases to house your new printer brains. While it isn’t officially supported by OctoPrint, you can use a USB webcam instead if you have one handy, or just want some very high-quality video streams. The OctoPrint wiki has a crowdsourced list of webcams known to work, as well as a link for the extra steps needed to get the webcam working correctly.

As mentioned earlier, our recommended way of printing a model using OctoPrint is to first use your slicer as you would if you were creating a file to save to a microSD card. Once you have the file, save it somewhere handy on your computer, and open the OctoPrint interface. In the bottom left of the screen, you will see the Upload File button — click this and upload the G-code you wish to print.

You’ll see the file/print details appear, including information on how long it’ll take for the object to print. Before you kick things off, check out the G-code Viewer tab on the right. You can not only scroll through the layers of the object, but, using the slider at the bottom, you can see the exact pattern the 3D printer will use to ‘draw’ each layer. Now click Print and watch your printer jump into action!

OctoPrint has scores of community-created plug-ins, but our favourite, Octolapse, makes beautiful hypnotic time-lapses. What makes them so special is that the plug-in alters the G-code of whatever object you are printing so that once each layer has finished, the extruder moves away from the print to let the camera take an unobstructed shot of the model. The result is an object that seems to grow out of the build plate as if by magic. You’ll not find a finer example of it than here.

Satisfying 3D Prints TimeLapse episode 7 (Prusa I3 Mk3 octopi)

3D Printing timelapses of models printed on the Prusa i3 MK3! Here’s another compilation of my recent timelapses. I got some shots that i think came out really great and i hope you enjoy them! as always if you want to see some of these timelapses before they come out or want to catch some behind the scenes action check out my instagram!

Thanks to Glenn and HackSpace magazine

This tutorial comes fresh from the pages of HackSpace magazine issue 26 and was written by Glenn Horan. Thanks, Glenn.

To get your copy of HackSpace magazine issue 26, visit your local newsagent, the Raspberry Pi Store, Cambridge, or the Raspberry Pi Press online store.

Fans of HackSpace magazine will also score themselves a rather delightful Adafruit Circuit Playground Express with a 12-month subscription. Sweet!

The post How to set up OctoPrint on your Raspberry Pi appeared first on Raspberry Pi.

Raspberry Pi capacitive-touch musical Christmas tree

via Raspberry Pi

What, your Christmas tree ISN’T touch-enabled?

Capacitive Touch Christmas Tree How To | Raspberry Pi | Bare Conductive Pi Cap

Turn your Christmas tree into a capacitive touch-interactive musical instrument using a Raspberry Pi and a Bare Conductive Pi Cap. You’ll be rocking around the Christmas tree in no time! /* Bare Conductive */ Pi Cap: https://www.bareconductive.com/shop/pi-cap/ Touch Board: https://www.bareconductive.com/shop/touch-board/ Code: https://github.com/BareConductive/picap-touch-mp3-py #RasberryPi #BareConductive #Christmas

Using the Bare Conductive Pi Cap, Davy Wybiral hooked up his fairy lights and baubles to a Raspberry Pi. The result? Musical baubles that allow the user to play their favourite festive classics at the touch of a finger. These baubles are fantastic, and it’s easy to make your own. Just watch the video for Davy’s how-to.

The code for Bare Conductive’s Pi Cap polyphonic touch MP3 utility can be found in this GitHub repo, and you can pick up a Pi Cap on the Bare Conductive website. Then all you need to do is hook up your favourite tree decorations to the Pi Cap via insulated wires, and you’re good to go. It’s OK if your decorations aren’t conductive: you’ll actually be touching the wires and not the ornaments themselves.

And don’t worry about touching the wires, it’s perfectly safe. But just in this instance. Please don’t make a habit of touching wires.

Make sure to subscribe to Davy on YouTube (we did) and give him a like for the baubles video. Also, leave a comment to tell him how great it is, because nice comments are lovely, and we should all be leaving as many of them as we can on the videos for our favourite creators.

The post Raspberry Pi capacitive-touch musical Christmas tree appeared first on Raspberry Pi.