Tag Archives: Uncategorized

3D print your own Rubik’s Cube Solver

via Raspberry Pi

Why use logic and your hands to solve a Rubik’s Cube, when you could 3D print your own Rubik’s Cube Solver and thus avoid overexerting your fingers and brain cells? Here to help you with this is Otvinta‘s new robotic make:

Fully 3D-Printed Rubik’s Cube Solving Robot

This 3D-printed Raspberry PI-powered Rubik’s Cube solving robot has everything any serious robot does — arms, servos, gears, vision, artificial intelligence and a task to complete. If you want to introduce robotics to your kids or your students, this is the perfect machine for it. This robot is fully 3D-printable.

Rubik’s Cubes

As Liz has said before, we have a lot of Rubik’s cubes here at Pi Towers. In fact, let me just…hold on…I’ll be right back.

Okay, these are all the ones I found on Gordon’s desk, and I’m 99% sure there are more in his drawers.

Raspberry Pi Rubik's Cube Solver

And that’s just Gordon. Given that there’s a multitude of other Pi Towers staff members who are also obsessed with the little twisty cube of wonder, you could use what you find in our office to restock an entire toy shop for the pre-Christmas rush!

So yeah, we like Rubik’s Cubes.

The 3D-Printable Rubik’s Cube Solver

Aside from the obvious electronic elements, Otvinta’s Rubik’s Cube Solving Robot is completely 3D-printable. While it may take a whopping 70 hours of print time and a whole spool of filament to make your solving robot a reality, we’ve seen far more time-consuming prints with a lot less purpose than this.

(If you’ve clicked the link above, I’d just like to point out that, while that build might be 3D printing overkill, I want one anyway.)

Rubik's Cube Solver

After 3D printing all the necessary parts of your Rubik’s Cube Solving Robot, you’ll need to run the Windows 10 IoT Core on your Raspberry Pi. Once connected to your network, you can select the Pi from the IoT Dashboard on your main PC and install the RubiksCubeRobot app.

Raspberry Pi Rubik's Cube Solver

Then simply configure the robot via the app, and you’re good to go!

You might not necessarily need a Raspberry Pi to create this build, since you could simply run the app on your main PC. However, using a Pi will make your project more manageable and less bulky.

You can find all the details of how to make your own Rubik’s Cube Solving Robot on Otvinta’s website, so do make sure to head over there if you want to learn more.

All the robots!

This isn’t the first Raspberry Pi-powered Rubik’s Cube out there, and it surely won’t be the last. There’s this one by Francesco Georg using LEGO Mindstorms; this one was originally shared on Reddit; Liz wrote about this one; and there’s one more which I can’t seem to find but I swear exists, and it looks like the Eye of Sauron! Ten House Points to whoever shares it with me in the comments below.

The post 3D print your own Rubik’s Cube Solver appeared first on Raspberry Pi.

Hunting for life on Mars assisted by high-altitude balloons

via Raspberry Pi

Will bacteria-laden high-altitude balloons help us find life on Mars? Today’s eclipse should bring us closer to an answer.

NASA Bacteria Balloons Raspberry Pi HAB Life on Mars

image c/o NASA / Ames Research Center / Tristan Caro

The Eclipse Ballooning Project

Having learned of the Eclipse Ballooning Project set to take place today across the USA, a team at NASA couldn’t miss the opportunity to harness the high-flying project for their own experiments.

NASA Bacteria Balloons Raspberry Pi HAB Life on Mars

The Eclipse Ballooning Project invited students across the USA to aid in the launch of 50+ high-altitude balloons during today’s eclipse. Each balloon is equipped with its own Raspberry Pi and camera for data collection and live video-streaming.

High-altitude ballooning, or HAB as it’s often referred to, has become a popular activity within the Raspberry Pi community. The lightweight nature of the device allows for high ascent, and its Camera Module enables instant visual content collection.

Life on Mars

image c/o Montana State University

The Eclipse Ballooning Project team, headed by Angela Des Jardins of Montana State University, was contacted by Jim Green, Director of Planetary Science at NASA, who hoped to piggyback on the project to run tests on bacteria in the Mars-like conditions the balloons would encounter near space.

Into the stratosphere

At around -35 degrees Fahrenheit, with thinner air and harsher ultraviolet radiation, the conditions in the upper part of the earth’s stratosphere are comparable to those on the surface of Mars. And during the eclipse, the moon will block some UV rays, making the environment in our stratosphere even more similar to the martian oneideal for NASA’s experiment.

So the students taking part in the Eclipse Ballooning Project could help the scientists out, NASA sent them some small metal tags.

NASA Bacteria Balloons Raspberry Pi HAB Life on Mars

These tags contain samples of a kind of bacterium known as Paenibacillus xerothermodurans. Upon their return to ground, the bacteria will be tested to see whether and how the high-altitude conditions affected them.

Life on Mars

Paenibacillus xerothermodurans is one of the most resilient bacterial species we know. The team at NASA wants to discover how the bacteria react to their flight in order to learn more about whether life on Mars could possibly exist. If the low temperature, UV rays, and air conditions cause the bacteria to mutate or indeed die, we can be pretty sure that the existence of living organisms on the surface of Mars is very unlikely.

Life on Mars

What happens to the bacteria on the spacecraft and rovers we send to space? This experiment should provide some answers.

The eclipse

If you’re in the US, you might have a chance to witness the full solar eclipse today. And if you’re planning to watch, please make sure to take all precautionary measures. In a nutshell, don’t look directly at the sun. Not today, not ever.

If you’re in the UK, you can observe a partial eclipse, if the clouds decide to vanish. And again, take note of safety measures so you don’t damage your eyes.

Life on Mars

You can also watch a live-stream of the eclipse via the NASA website.

If you’ve created an eclipse-viewing Raspberry Pi project, make sure to share it with us. And while we’re talking about eclipses and balloons, check here for our coverage of the 2015 balloon launches coinciding with the UK’s partial eclipse.

The post Hunting for life on Mars assisted by high-altitude balloons appeared first on Raspberry Pi.

Michael Reeves and the ridiculous Subscriber Robot

via Raspberry Pi

At the beginning of his new build’s video, YouTuber Michael Reeves discusses a revelation he had about why some people don’t subscribe to his channel:

The real reason some people don’t subscribe is that when you hit this button, that’s all, that’s it, it’s done. It’s not special, it’s not enjoyable. So how do we make subscribing a fun, enjoyable process? Well, we do it by slowly chipping away at the content creator’s psyche every time someone subscribes.

His fix? The ‘fun’ interactive Subscriber Robot that is the subject of the video.

Be aware that Michael uses a couple of mild swear words in this video, so maybe don’t watch it with a child.

The Subscriber Robot

Just showing that subscriber dedication My Patreon Page: https://www.patreon.com/michaelreeves Personal Site: https://michaelreeves.us/ Twitter: https://twitter.com/michaelreeves08 Song: Summer Salt – Sweet To Me

Who is Michael Reeves?

Software developer and student Michael Reeves started his YouTube account a mere four months ago, with the premiere of his robot that shines lasers into your eyes – now he has 110k+ subscribers. At only 19, Michael co-owns and manages a company together with friends, and is set on his career path in software and computing. So when he is not making videos, he works a nine-to-five job “to pay for college and, y’know, live”.

The Subscriber Robot

Michael shot to YouTube fame with the aforementioned laser robot built around an Arduino. But by now he has also be released videos for a few Raspberry Pi-based contraptions.

Michael Reeves Raspberry Pi Subscriber Robot

Michael, talking us through the details of one of the worst ideas ever made

His Subscriber Robot uses a series of Python scripts running on a Raspberry Pi to check for new subscribers to Michael’s channel via the YouTube API. When it identifies one, the Pi uses a relay to make the ceiling lights in Michael’s office flash ten times a second while ear-splitting noise is emitted by a 102-decibel-rated buzzer. Needless to say, this buzzer is not recommended for home use, work use, or any use whatsoever! Moreover, the Raspberry Pi also connects to a speaker that announces the name of the new subscriber, so Michael knows who to thank.

Michael Reeves Raspberry Pi Subscriber Robot

Subscriber Robot: EEH! EEH! EEH! MoistPretzels has subscribed.
Michael: Thank you, MoistPretzels…

Given that Michael has gained a whopping 30,000 followers in the ten days since the release of this video, it’s fair to assume he is currently curled up in a ball on the office floor, quietly crying to himself.

If you think Michael only makes videos about ridiculous builds, you’re mistaken. He also uses YouTube to provide educational content, because he believes that “it’s super important for people to teach themselves how to program”. For example, he has just released a new C# beginners tutorial, the third in the series.

Support Michael

If you’d like to help Michael in his mission to fill the world with both tutorials and ridiculous robot builds, make sure to subscribe to his channel. You can also follow him on Twitter and support him on Patreon.

You may also want to check out the Useless Duck Company and Simone Giertz if you’re in the mood for more impractical, yet highly amusing, robot builds.

Good luck with your channel, Michael! We are looking forward to, and slightly dreading, more videos from one of our favourite new YouTubers.

The post Michael Reeves and the ridiculous Subscriber Robot appeared first on Raspberry Pi.

Thomas and Ed become a RealLifeDoodle on the ISS

via Raspberry Pi

Thanks to the very talented sooperdavid, creator of some of the wonderful animations known as RealLifeDoodles, Thomas Pesquet and Astro Pi Ed have been turned into one of the cutest videos on the internet.

space pi – Create, Discover and Share Awesome GIFs on Gfycat

Watch space pi GIF by sooperdave on Gfycat. Discover more GIFS online on Gfycat

And RealLifeDoodles aaaaare?

Thanks to the power of viral video, many will be aware of the ongoing Real Life Doodle phenomenon. Wait, you’re not aware?

Oh. Well, let me explain it to you.

Taking often comical video clips, those with a know-how and skill level that outweighs my own in spades add faces and emotions to inanimate objects, creating what the social media world refers to as a Real Life Doodle. From disappointed exercise balls to cannibalistic piles of leaves, these video clips are both cute and sometimes, though thankfully not always, a little heartbreaking.

letmegofree – Create, Discover and Share Awesome GIFs on Gfycat

Watch letmegofree GIF by sooperdave on Gfycat. Discover more reallifedoodles GIFs on Gfycat

Our own RealLifeDoodle

A few months back, when Programme Manager Dave Honess, better known to many as SpaceDave, sent me these Astro Pi videos for me to upload to YouTube, a small plan hatched in my brain. For in the midst of the video, and pointed out to me by SpaceDave – “I kind of love the way he just lets the unit drop out of shot” – was the most adorable sight as poor Ed drifted off into the great unknown of the ISS. Finding that I have this odd ability to consider many inanimate objects as ‘cute’, I wanted to see whether we could turn poor Ed into a RealLifeDoodle.

Heading to the Reddit RealLifeDoodle subreddit, I sent moderator sooperdavid a private message, asking if he’d be so kind as to bring our beloved Ed to life.

Yesterday, our dream came true!

Astro Pi

Unless you’re new to the world of the Raspberry Pi blog (in which case, welcome!), you’ll probably know about the Astro Pi Challenge. But for those who are unaware, let me break it down for you.

Raspberry Pi RealLifeDoodle

In 2015, two weeks before British ESA Astronaut Tim Peake journeyed to the International Space Station, two Raspberry Pis were sent up to await his arrival. Clad in 6063-grade aluminium flight cases and fitted with their own Sense HATs and camera modules, the Astro Pis Ed and Izzy were ready to receive the winning codes from school children in the UK. The following year, this time maintained by French ESA Astronaut Thomas Pesquet, children from every ESA member country got involved to send even more code to the ISS.

Get involved

Will there be another Astro Pi Challenge? Well, I just asked SpaceDave and he didn’t say no! So why not get yourself into training now and try out some of our space-themed free resources, including our 3D-print your own Astro Pi case tutorial? You can also follow the adventures of Ed and Izzy in our brilliant Story of Astro Pi cartoons.

Raspberry Pi RealLifeDoodle

And if you’re quick, there’s still time to take part in tomorrow’s Moonhack! Check out their website for more information and help the team at Code Club Australia beat their own world record!

The post Thomas and Ed become a RealLifeDoodle on the ISS appeared first on Raspberry Pi.

An Arduino fidget spinner arcade controller

via Arduino Blog

Apparently unsatisfied with existing video game input devices, game designer Rob Santos created his own using, what else, fidget spinners. His system combines a spinner and five buttons on a pair of controllers to interface with Flock Off, an arcade game loosely based on Flappy Bird.

To register spinner input, a magnet is embedded on each lobe, triggering a Hall effect sensor three times per revolution when spun. An Arduino in each control box reads these signals, then sends this information, along with button inputs, to the game via USB accessible through a serial port.

Although using the Uno in this way means that the game must be programmed especially for this type of input, Santos notes that using an HID-capable board, such as the Leonardo, would give it the capability to act as a keyboard input by itself.

Scratch 2.0: all-new features for your Raspberry Pi

via Raspberry Pi

We’re very excited to announce that Scratch 2.0 is now available as an offline app for the Raspberry Pi! This new version of Scratch allows you to control the Pi’s GPIO (General Purpose Input and Output) pins, and offers a host of other exciting new features.

Offline accessibility

The most recent update to Raspbian includes the app, which makes Scratch 2.0 available offline on the Raspberry Pi. This is great news for clubs and classrooms, where children can now use Raspberry Pis instead of connected laptops or desktops to explore block-based programming and physical computing.

Controlling GPIO with Scratch 2.0

As with Scratch 1.4, Scratch 2.0 on the Raspberry Pi allows you to create code to control and respond to components connected to the Pi’s GPIO pins. This means that your Scratch projects can light LEDs, sound buzzers and use input from buttons and a range of sensors to control the behaviour of sprites. Interacting with GPIO pins in Scratch 2.0 is easier than ever before, as text-based broadcast instructions have been replaced with custom blocks for setting pin output and getting current pin state.

Scratch 2.0 GPIO blocks

To add GPIO functionality, first click ‘More Blocks’ and then ‘Add an Extension’. You should then select the ‘Pi GPIO’ extension option and click OK.

Scratch 2.0 GPIO extension

In the ‘More Blocks’ section you should now see the additional blocks for controlling and responding to your Pi GPIO pins. To give an example, the entire code for repeatedly flashing an LED connected to GPIO pin 2.0 is now:

Flashing an LED with Scratch 2.0

To react to a button connected to GPIO pin 2.0, simply set the pin as input, and use the ‘gpio (x) is high?’ block to check the button’s state. In the example below, the Scratch cat will say “Pressed” only when the button is being held down.

Responding to a button press on Scractch 2.0

Cloning sprites

Scratch 2.0 also offers some additional features and improvements over Scratch 1.4. One of the main new features of Scratch 2.0 is the ability to create clones of sprites. Clones are instances of a particular sprite that inherit all of the scripts of the main sprite.

The scripts below show how cloned sprites are used — in this case to allow the Scratch cat to throw a clone of an apple sprite whenever the space key is pressed. Each apple sprite clone then follows its ‘when i start as clone’ script.

Cloning sprites with Scratch 2.0

The cloning functionality avoids the need to create multiple copies of a sprite, for example multiple enemies in a game or multiple snowflakes in an animation.

Custom blocks

Scratch 2.0 also allows the creation of custom blocks, allowing code to be encapsulated and used (possibly multiple times) in a project. The code below shows a simple custom block called ‘jump’, which is used to make a sprite jump whenever it is clicked.

Custom 'jump' block on Scratch 2.0

These custom blocks can also optionally include parameters, allowing further generalisation and reuse of code blocks. Here’s another example of a custom block that draws a shape. This time, however, the custom block includes parameters for specifying the number of sides of the shape, as well as the length of each side.

Custom shape-drawing block with Scratch 2.0

The custom block can now be used with different numbers provided, allowing lots of different shapes to be drawn.

Drawing shapes with Scratch 2.0

Peripheral interaction

Another feature of Scratch 2.0 is the addition of code blocks to allow easy interaction with a webcam or a microphone. This opens up a whole new world of possibilities, and for some examples of projects that make use of this new functionality see Clap-O-Meter which uses the microphone to control a noise level meter, and a Keepie Uppies game that uses video motion to control a football. You can use the Raspberry Pi or USB cameras to detect motion in your Scratch 2.0 projects.

Other new features include a vector image editor and a sound editor, as well as lots of new sprites, costumes and backdrops.

Update your Raspberry Pi for Scratch 2.0

Scratch 2.0 is available in the latest Raspbian release, under the ‘Programming’ menu. We’ve put together a guide for getting started with Scratch 2.0 on the Raspberry Pi online (note that GPIO functionality is only available via the desktop version). You can also try out Scratch 2.0 on the Pi by having a go at a project from the Code Club projects site.

As always, we love to see the projects you create using the Raspberry Pi. Once you’ve upgraded to Scratch 2.0, tell us about your projects via Twitter, Instagram and Facebook, or by leaving us a comment below.

The post Scratch 2.0: all-new features for your Raspberry Pi appeared first on Raspberry Pi.