Tag Archives: wifi

Modded Microwave Sets Its Own Clock

via Hackaday » hardware

Of all the appliances in your house, perhaps the most annoying is a microwave with a flashing unset clock. Even though a lot of devices auto-set their time these days, most appliances need to have their time set after being unplugged or after a power outage. [Tiago] switches off power to some of his appliances while he’s at work to save a bit of power, and every time he plugs his microwave back in he has to manually reset the clock.

Thankfully [Tiago] wrote in with his solution to this problem: an add-on to his microwave that automatically sets the time over the network. [Tiago]’s project uses an ESP8266 running the Lua-based firmware we’ve featured before. The ESP module connects to [Tiago]’s WiFi network and pulls the current time off of his Linux server.

Next, [Tiago] ripped apart his microwave and tacked some wires on the “set time” button and on the two output pins of the microwave’s rotary encoder. He ran all three signals through optoisolators for safety, and then routed them to a few GPIO pins on his ESP module. When the microwave and the ESP module are powered up, [Tiago]’s Lua script pulls the time from his server, simulates a press of the “set time” button, and simulates the rotary encoder output to set the microwave’s time.

While [Tiago] didn’t post any detailed information on his build, it looks like a great idea that could easily be improved on (like adding NTP support). Check out the video after the break to see the setup in action.


Filed under: hardware, home hacks

Streaming Your Webcam w/ Raspberry Pi

via Wolf Paulus » Embedded

[Last updated on Feb. 2. 2013 for (2012-12-16-wheezy-raspbian) Kernel Version 3.2.27+]

Three years ago, we bought two small Webcams and since we wanted to use them on Linux and OS X, we went with the UVC and Mac compatible Creative LIVE! CAM Video IM Ultra. This Webcam (Model VF0415) has a high-resolution sensor that lets you take 5.0-megapixel pictures and record videos at up to 1.3-megapixel; supported resolutions include 640×480, 1290×720, and 1280×960. If you like, you can go back and read what I was thinking about the IM Ultra, back in 2009. Today, it’s not much used anymore, but may just be the right accessory for a Raspberry Pi.

With the USB Camera attached to the Raspi, lsusb returns something like this:

lsusb

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 002: ID 0424:9512 Standard Microsystems Corp.
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.
Bus 001 Device 004: ID 7392:7811 Edimax Technology Co., Ltd EW-7811Un 802.11n Wireless Adapter [Realtek RTL8188CUS]
Bus 001 Device 005: ID 041e:4071 Creative Technology, Ltd

Using the current Raspbian “wheezy” distribution (Kernel 3.2.27+), one can find the following related packages, ready for deployment:

  • luvcview, a camera viewer for UVC based webcams, which includes an mjpeg decoder and is able to save the video stream as an AVI file.
  • uvccapture, which can capture an image (JPEG) from a USB webcam at a specified interval

While these might be great tools, mpeg-streamer looks like a more complete, one-stop-shop kind-of solution.

Get the mpeg-streamer source code

Either install Subversion (svn) on the Raspberry Pi or use svn installed on your Mac or PC, to get the source-code before using Secure Copy (scp) to copy it over to your Raspi.

Here, I’m using svn, which is already installed on the Mac, before copying the files over to my Raspi, (username pi, hostname is phobos)

cd ~
mkdir tmp
cd tmp
svn co https://mjpg-streamer.svn.sourceforge.net/svnroot/mjpg-streamer mjpg-streamer
scp -r ./mjpg-streamer pi@phobos:mjpg-streamer

Please note: Looks like the repo got recently moved, Try this to check-out the code if the previous step does not work:

svn co https://svn.code.sf.net/p/mjpg-streamer/code/mjpg-streamer/ mjpg-streamer

Over on the Raspi, I tried to make the project, but quickly ran into error messages, hinting at a missing library.

ssh pi@phobos
cd mjpg-streamer/mjpg-streamer
make
...
jpeg_utils.c:27:21: fatal error: jpeglib.h: No such file or directory, compilation terminated.
make[1]: *** [jpeg_utils.lo] Error 1

After finding out, which libraries were available (apt-cache search libjpeg), I installed libjpeg8-dev like so: sudo apt-get install libjpeg8-dev. This time, I got a lot further, before hitting the next build error:


make
...
make[1]: *** [pictures/640x480_1.jpg] Error 127
make[1]: Leaving directory `/home/pi/mjpg-streamer/mjpg-streamer/plugins/input_testpicture'

After some google-ing, which resulted in installing ImageMagick like so: sudo apt-get install imagemagick, the next build attempt looked much more promissing:

make
..

and ls -lt shows the newly built files on top:

-rwxr-xr-x 1 pi pi 13909 Sep 8 07:51 input_file.so
-rwxr-xr-x 1 pi pi 168454 Sep 8 07:51 input_testpicture.so
-rwxr-xr-x 1 pi pi 31840 Sep 8 07:50 output_http.so
-rwxr-xr-x 1 pi pi 14196 Sep 8 07:50 output_udp.so
-rwxr-xr-x 1 pi pi 19747 Sep 8 07:50 output_file.so
-rwxr-xr-x 1 pi pi 29729 Sep 8 07:50 input_uvc.so
-rwxr-xr-x 1 pi pi 15287 Sep 8 07:50 mjpg_streamer
-rw-r--r-- 1 pi pi 1764 Sep 8 07:50 utils.o
-rw-r--r-- 1 pi pi 9904 Sep 8 07:50 mjpg_streamer.o

MJPG-streamer

MJPG-streamer is a command line tool to stream JPEG files over an IP-based network. MJPG-streamer relies on input- and output-plugins, e.g. an input-plugin to copy JPEG images to a globally accessible memory location, while an output-plugin, like output_http.so, processes the images, e.g. serve a single JPEG file (provided by the input plugin), or streams them according to existing mpeg standards.

Therefore, the important files that were built in the previous step are:

  • mjpg_streamer – command line tool that copies JPGs from a single input plugin to one or more output plugins.
  • input_uvc.so – captures such JPG frames from a connected webcam. (Stream up to 960×720 pixel large images from your webcam at a high frame rate (>= 15 fps) with little CPU load.
  • output_http.so – HTTP 1.0 webserver, serves a single JPEG file of the input plugin, or streams them according to M-JPEG standard.

Starting the Webcam Server

A simple launch command would look like this:
./mjpg_streamer -i "./input_uvc.so" -o "./output_http.so -w ./www"

MJPG Streamer Version: svn rev:
i: Using V4L2 device.: /dev/video0
i: Desired Resolution: 640 x 480
i: Frames Per Second.: 5
i: Format…………: MJPEG
o: HTTP TCP port…..: 8080
o: username:password.: disabled
o: commands……….: enabled

Open a Webbrowser on another computer on the LAN and open this url: http://{name or IP-address of the Raspi}:8080

However, experimenting with the resolution and frame rate parameters is well worth it and can improved the outcome.

UVC Webcam Grabber Parameters

The following parameters can be passed to this plugin:

-d video device to open (your camera)
-r the resolution of the video device,
can be one of the following strings:
QSIF QCIF CGA QVGA CIF VGA SVGA XGA SXGA
or a custom value like: 640×480
-f frames per second
-y enable YUYV format and disable MJPEG mode
-q JPEG compression quality in percent
(activates YUYV format, disables MJPEG)
-m drop frames smaller then this limit, useful
if the webcam produces small-sized garbage frames
may happen under low light conditions
-n do not initalize dynctrls of Linux-UVC driver
-l switch the LED “on”, “off”, let it “blink” or leave
it up to the driver using the value “auto”

HTTP Output Parameters

The following parameters can be passed to this plugin:

-w folder that contains webpages in flat hierarchy (no subfolders)
-p TCP port for this HTTP server
-c ask for “username:password” on connect
-n disable execution of commands

I have seen some good results with this
./mjpg_streamer -i "./input_uvc.so -n -f 15 -r 640x480" -o "./output_http.so -n -w ./www"
but even a much higher resolution didn’t impact the actually observed frame-rate all that much:
./mjpg_streamer -i "./input_uvc.so -n -f 15 -r 1280x960" -o "./output_http.so -n -w ./www"

MJPG Streamer Version: svn rev:
i: Using V4L2 device.: /dev/video0
i: Desired Resolution: 1280 x 960
i: Frames Per Second.: 15
i: Format…………: MJPEG
o: www-folder-path…: ./www/
o: HTTP TCP port…..: 8080
o: username:password.: disabled
o: commands……….: disabled

Webcam Stream Clients

The included Website (http://{name or IP-address of the Raspi}:8080) shows examples for how to connect a client to the Webcam stream. The easiest way is obviously a simple HTML page that works great with Google Chrome and Firefox but not so much with Safari. Anyways, it’s important to specify the width and height that was configured with the output_http.so, in the HTML as well


  <img alt="" src="http://phobos:8080/?action=stream" width="1280" height="960" />

Raspberry Pi Webcam Streamer

Taking the Raspberry Pi Web Stream Server Outside

This is the Raspberry Pi powered by a 5VDC, 700mA battery, with an (Edimax EW-7811Un) USB-WiFi Adapter and the Creative LIVE! CAM Video IM Ultra connected.

Video Lan Client for Viewing and Recording

Using Video Lan Client, you can view and also record the video stream, served by the Raspi.

Recorded Webcam Streamer

Movie, streamed from a Raspberry Pi

Raspberry Pi Webcam from Tech Casita Productions on Vimeo.

Let me know what Webcam software you found that works well on the Raspberry Pi.

Tiny WiFi Adapter for Raspberry Pi

via Wolf Paulus » Embedded

[Updated on Feb. 2. 2013 for (2012-12-16-wheezy-raspbian) Kernel Version 3.2.27+]

The extremely small EW-7811Un USB wireless adapter looks like the perfect WiFi adapter for the Raspberry Pi. Not only is it tiny and relatively inexpensive, it also seems capable enough to be a great companion device for the Raspi. While elinux still shows that some users report timeouts trying to initialize the module, I cannot verify this with 2012-12-16-wheezy-raspbian.

WiFi is not really necessary for the Raspberry Pi. It already comes with an ethernet port, provides RS-232 (aka serial-) connectivity, and has two USB ports. However, in case you wanted to add WiFi to the Raspi, this little adapter seems to be as good as any. Here is why:

The Edimax EW-7811Un

  • complies with wireless IEEE802.11b/g/n standards
  • adjust transmission output by distance and CPU offload, to reduce power consumption when wireless is idle
  • is currently the smallest wireless adapter
  • currently cost between US$ 9 and US$ 15

more than enough reasons to cut the cord and add WiFi connectivity to the Raspberry Pi.

After performing the usual initial configuration in raspi-config, using WiFi Config (a GUI tool sitting at the desktop when starting LXDE with startx) is by far the easiest way to get the Edimax EW-7811Un configured.

But let’s quickly run through the steps of creating that bootable SDCard before dealing with the actual WiFi issues:

Creating that bootable SDCard

  1. Download the image file from http://www.raspberrypi.org/downloads
  2. Unzip the file to get to the image file.
  3. df -h to determine which drive is used for the sdcard, e.g. integrated SDCard Reader turned out to be disk2 for me.
  4. sudo diskutil unmount /dev/disk2s1
  5. sudo dd bs=1m if=/Users/wolf/Downloads/2012-12-16-wheezy-raspbian.img of=/dev/rdisk2
  6. sync
  7. sudo diskutil eject /dev/rdisk2

On a class 10 SD Card, the whole process shouldn’t take much longer than 70 seconds maybe. Insert the SDCard into the Raspi, power up, boot, and use the on screen menu:

In case you need to do this over a network, the Raspberry Pi’s default hostname is raspberrypi. I.e.
ssh pi@raspberrypi .. the pasword is raspberry

sudo raspi-config
to:

  • Expand root_fs
  • Change password
  • Change locale to EN_US.UTF-8 UTF-8 (un-select english UK and select select in long list)
  • Set Time zone (America / Los_Angeles)
  • Change memory split to 128:128
  • Enable ssh

Finally reboot: sudo shutdown -r now
Running the raspi-config again to execute update feature, reboot and login.
Now finding more updates and upgrades like so:

sudo apt-get update
sudo apt-get upgrade

Changing the PI’s hostname

Edit the host name in these two locations:

  • sudo nano /etc/hostname
  • sudo nano /etc/hosts

Adding WiFi support / EW-7811Un

With previous wheezy builds, I had to install the realtek firmware, blacklist the already installed 8192cu driver and install a new one. Not this time. ifconfig shows the wlan0 interface and iwlist wlan0 scan can be used to scan for available Wifi access-points, without any firmware installation or driver updates.

/etc/wpa_supplicant/wpa_supplicant.conf

All what’s needed to do to connect the Raspberry Pi to a Wifi Network, is to add a network configuration to /etc/wpa_supplicant/wpa_supplicant.conf.

sudo nano /etc/wpa_supplicant/wpa_supplicant.conf

The network configuration depends very much on your network, SSID, Password Security etc. However, here is what I have added, to make the EW-7811Un connect to my WiFi network:


network={
ssid="MY_SSID"
psk="******"
proto=RSN
key_mgmt=WPA-PSK
pairwise=CCMP
auth_alg=OPEN
}

With the correct WiFi network configuration added to the wpa_supplicant.conf file, the ethernet cable can be removed and the Raspberry Pi will automatically switch over to WiFi.
This behavior is pre-configured in /etc/network/interfaces, which looks something like this:

auto lo

iface lo inet loopback
iface eth0 inet dhcp

allow-hotplug wlan0
iface wlan0 inet manual
wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf
iface default inet dhcp


Raspberry Pi – WiFi (Edimax EW-7811Un)

Backup the SD Card

Once done with setting up Raspian, I usually create an backup image that later can be copied onto the same or a different SD Card (of equal size).

Backup

Insert the perfect SDCard into the Card Reader and find out how to address it. Again, for me that usually is disk2s1.

sudo diskutil unmount /dev/disk2s1
sudo dd bs=1m if=/dev/rdisk2 of=~/RASP_3_2_27.img
sync
sudo diskutil eject /dev/rdisk2

Depending on the size of the SDCard, this will create a huge file (like 16GB) an may take a while (like 7min).

Restore or Copy

Insert am empty SDCard into the Card Reader and find out how to address it. Once again, for me that usually is disk2s1.

sudo diskutil unmount /dev/disk2s1
sudo dd bs=1m if=~/RASP_3_2_27.img of=/dev/rdisk2
sync
sudo diskutil eject /dev/rdisk2