Author Archives: Sue Sentance

How is computing taught in schools around the world?

via Raspberry Pi

Around the world, formal education systems are bringing computing knowledge to learners. But what exactly is set down in different countries’ computing curricula, and what are classroom educators teaching? This was the topic of the first in the autumn series of our Raspberry Pi research seminars on Tuesday 8 September.

A glowing globe floating above an open hand in the dark

We heard from an international team (Monica McGill , USA; Rebecca Vivian, Australia; Elizabeth Cole, Scotland) who represented a group of researchers also based in England, Malta, Ireland, and Italy. As a researcher working at the Raspberry Pi Foundation, I myself was part of this research group. The group developed METRECC, a comprehensive and validated survey tool that can be used to benchmark and measure developments of the teaching and learning of computing in formal education systems around the world. Monica, Rebecca, and Elizabeth presented how the research group developed and validated the METRECC tool, and shared some findings from their pilot study.

What’s in a curriculum? Developing a survey tool

Those of us who work or have worked in school education use the word ‘curriculum’ frequently, although it’s an example of education terminology that means different things in different contexts, and to different people. Following Porter and Smithson (2001)1, we can distinguish between the intended curriculum and the enacted curriculum:

  • Intended curriculum: Policy tools as curriculum standards, frameworks, or guidelines that outline the curriculum teachers are expected to deliver.
  • Enacted curriculum: Actual curricular content in which students engage in the classroom, and adopted pedagogical approaches; for computer science (CS) curricula, this also includes students’ use of technology, physical computing devices, and tools in CS lessons.

To compare the intended and enacted computing curriculum in as many countries as possible, at particular points in time, the research group Monica, Rebecca, Elizabeth, and I were part of developed the METRECC survey tool.

A classroom of students in North America

METRECC stands for MEasuring TeacheREnacted Computing Curriculum. The METRECC survey has 11 categories of questions and is designed to be completed by computing teachers within 35–40 minutes. Following best practice in research, which calls for standardised research instruments, the research group ensured that the survey produces valid, reliable results (meaning that it works as intended) before using it to gather data.

Using METRECC in a pilot study

In their pilot study, the research group gathered data from 7 countries. The intended curriculum for each country was determined by examining standards and policies in place for each country/state under consideration. Teachers’ answers in the METRECC survey provided the countries’ enacted curricula. (The complete dataset from the pilot study is publicly available at csedresearch.org, a very useful site for CS education researchers where many surveys are shared.)

Two girls coding at a computer under supervision of a female teacher

The researchers then mapped the intended to the enacted curricula to find out whether teachers were actually teaching the topics that were prescribed for them. Overall, the results of the mapping showed that there was a good match between intended and enacted curricula. Examples of mismatches include lower numbers of primary school teachers reporting that they taught visual or symbolic programming, even though the topic did appear on their curriculum.

A table listing computer science topics
This table shows computer science topic the METRECC tool asks teachers about, and what percentage of respondents in the pilot study stated that they teach these to their students.

Another aspect of the METRECC survey allows to measure teachers’ confidence, self-efficacy, and self-esteem. The results of the pilot study showed a relationship between years of experience and CS self-esteem; in particular, after four years of teaching, teachers started to report high self-esteem in relation to computer science. Moreover, primary teachers reported significantly lower self-esteem than secondary teachers did, and female teachers reported lower self-esteem than male teachers did.

Adapting the survey’s language

The METRECC survey has also been used in South Asia, namely Bangladesh, Nepal, Pakistan, and Sri Lanka (where computing is taught under ICT). Amongst other things, what the researchers learned from that study was that some of the survey questions needed to be adapted to be relevant to these countries. For example, while in the UK we use the word ‘gifted’ to mean ‘high-attaining’, in the South Asian countries involved in the study, to be ‘gifted’ means having special needs.

Two girls coding at a computer under supervision of a female teacher

The study highlighted how important it is to ensure that surveys intended for an international audience use terminology and references that are pertinent to many countries, or that the survey language is adapted in order to make sense in each context it is delivered. 

Let’s keep this monitoring of computing education moving forward!

The seminar presentation was well received, and because we now hold our seminars for 90 minutes instead of an hour, we had more time for questions and answers.

My three main take-aways from the seminar were:

1. International collaboration is key

It is very valuable to be able to form international working groups of researchers collaborating on a common project; we have so much to learn from each other. Our Raspberry Pi research seminars attract educators and researchers from many different parts of the world, and we can truly push the field’s understanding forward when we listen to experiences and lessons of people from diverse contexts and cultures.

2. Making research data publicly available

Increasingly, it is expected that research datasets are made available in publicly accessible repositories. While this is becoming the norm in healthcare and scientific, it’s not yet as prevalent in computing education research. It was great to be able to publicly share the dataset from the METRECC pilot study, and we encourage other researchers in this field to do the same. 

3. Extending the global scope of this research

Finally, this work is only just beginning. Over the last decade, there has been an increasing move towards teaching aspects of computer science in school in many countries around the world, and being able to measure change and progress is important. Only a handful of countries were involved in the pilot study, and it would be great to see this research extend to more countries, with larger numbers of teachers involved, so that we can really understand the global picture of formal computing education. Budding research students, take heed!

Next up in our seminar series

If you missed the seminar, you can find the presentation slides and a recording of the researchers’ talk on our seminars page.

In our next seminar on Tuesday 6 October at 17:00–18:30 BST / 12:00–13:30 EDT / 9:00–10:30 PT / 18:00–19:30 CEST, we’ll welcome Shuchi Grover, a prominent researcher in the area of computational thinking and formative assessment. The title of Shuchi’s seminar is Assessments to improve student learning in introductory CS classrooms. To join, simply sign up with your name and email address.

Once you’ve signed up, we’ll email you the seminar meeting link and instructions for joining. If you attended this past seminar, the link remains the same.


1. Andrew C. Porter and John L. Smithson. 2001. Defining, Developing and Using Curriculum Indicators. CPRE Research Reports, 12-2001. (2001)

The post How is computing taught in schools around the world? appeared first on Raspberry Pi.

Gender balance in computing: current research

via Raspberry Pi

We’ve really enjoyed starting a series of seminars on computing education research over the summer, as part of our strategy to develop research at the Raspberry Pi Foundation. We want to deepen our understanding of how young people learn about computing and digital making, in order to increase the impact of our own work and to advance the field of computing education.

Part of deepening our understanding is to hear from and work with experts from around the world. The seminar series, and our online research symposium, are an opportunity to do that. In addition, these events support the global computing education research community by providing relevant content and a forum for discussion. You can see the talks recordings and slides of all our previous seminar speakers and symposium speakers on our website.

Gender balance in your computing classroom: what the research says

Our seventh seminar presentation was given by Katharine Childs from our own team. She works on our DfE-funded Gender Balance in Computing programme and gave a brilliant summary of some of the recent research around barriers to gender balance in school computing.

Screenshot of a presentation about gender balance in computing. Text says: "Key questions: What are the barriers which prevent girls' participation in computing? Which interventions can support girls to choose computing qualifications and careers?"

In her presentation, Katharine considered belongingness, role models, relevance to real-world contexts, and non-formal learning. She drew out the links between theory and practice and suggested a range of interventions. I recommend watching the video of her presentation and looking through her slides. 

Katharine has also been publishing a number of excellent blog posts summarising her research on gender balance:

You can read more about our Gender Balance in Computing project and sign up to receive regular newsletters about it.

Join our autumn seminar series

From September, our computing education research seminars will take place on the first Tuesday of each month, starting at 17:00 UK time.

We’re excited about the range of topics to be presented, and about our fantastic lineup of speakers: an international group from Australia, the US, Ireland, and Scotland will present on a survey of computing education curricular and teaching around the world; Shuchi Grover will talk to us about formative assessment; and David Weintrop will share his work on block-based programming. I’ll be talking about my research on PRIMM and the benefits of language and talk in the programming classroom. And we’re lining up more speakers after that.

Find out more and sign up today at rpf.io/research-seminars!

Thank you

We’d like to thank everyone who has participated in our seminar series, whether as speaker or attendee. We’ve welcomed attendees from 22 countries and speakers from the US, UK, and Spain. You’ve all really helped us to start this important work, and we look forward to working with you in the next academic year!

The post Gender balance in computing: current research appeared first on Raspberry Pi.

Reducing the load: ways to support novice programmers

via Raspberry Pi

What’s your experience of learning to program? Have you given up and thought it just wasn’t for you? This has been the case for many people — and it’s the focus of a lot of research. Now that teaching programming is in the curriculum in many countries around the world, it’s even more important that we understand what we can do to make learning to program accessible and achievable for all students.

What is cognitive load for learners?

In education, one of the problems thought to cause students difficulty with learning anything — not just programming — is cognitive load. Cognitive load, a concept introduced in the 1980s by John Sweller, has received a lot of attention in the last few years. It is based on the idea that our working memory (the part of our memory that processes what we are currently doing) can only deal with a limited amount of information at any one time. For example, you can imagine that when you are just starting to learn to program, there is an awful lot going on in your working memory, and this can make the task of assimilating it all very challenging; selection, loops, arrays, and objects are all tricky concepts that you need to get to grips with. Cognitive load is a stress on a learner’s working memory, reducing their ability to process and learn new information.

Dr Briana Morrison (University of Nebraska-Omaha)

Finding ways of teaching programming that reduce cognitive load is really key for all of us engaged in computing education, so we were delighted to welcome Dr Briana Morrison (University of Nebraska-Omaha) as the speaker at our latest research seminar. Briana’s talk was titled ‘Using subgoal Labels to Reduce Cognitive Load in Introductory Programming’.

The thrust of Briana’s and her colleagues’ research is that, as educators, we can design instructional experiences around computer programming so that they minimise cognitive load. Using worked examples with subgoal labels is one approach that has been shown to help a lot with this. 

Subgoal labels help students memorise and generalise

Think back to the way you may have learned mathematics: in maths, worked examples are often used to demonstrate how to solve a problem step by step. The same can be done when teaching programming. For example, if we want to write a loop in Python, the teacher can show us a step-by-step approach using an example, and we can then apply this approach to our own task. Sounds reasonable, right?

What subgoal labels add is that, rather than just calling the steps of the worked example ‘Step 1’, ‘Step 2’, etc., the teacher uses memorable labels. For example, a subgoal label might be ‘define and initialise variables’. Such labels not only help us to remember, but more importantly, they help us to generalise the teacher’s example and grasp how to use it for many other applications.

Subgoal labels help students perform better

In her talk, Briana gave us examples of subgoal labels in use and explained how to write subgoal labels, as well as how to work with subject experts to find the best subgoal labels for a particular programming construct or area of teaching. She also shared with us some very impressive results from her team’s research examining the impact of this teaching approach. 

Screenshot of Dr Briana Morrison's research seminar talk

Briana and her colleagues have carried out robust studies comparing students who were taught using subgoals with students who weren’t. The study she discussed in the seminar involved 307 students; students in the group that learned with worked examples containing subgoal labels gave more complete answers to questions, and showed that they could understand the programming constructs at a higher level, than students who learned with worked examples that didn’t contain the subgoal labels. The study also found that the impact of subgoal labels was even more marked for students in at-risk groups (i.e. students at risk of performing badly or of dropping out).

It seems that this teaching approach works really well. The study’s participants were students in introductory computer science classes at university, so it would be interesting to see whether these results can be replicated at school level, where arguably cognitive load is even more of an issue.

Briana’s seminar was very well received, with attendees asking lots of questions about the details of the research and how it could be replicated. Her talk even included some audience participation, which got us all tapping our heads and rubbing our bellies!

Screenshot of Dr Briana Morrison's research seminar talk

Very helpfully, Briana shared a list of resources related to subgoal labels, which you can access via her talk slides on our seminars page.

You can also read more about the background and practical application of cognitive load theory and worked examples including subgoal labels in the Pedagogy Quick Read series we’re producing as part of our work in the National Centre of Computing Education.

Next up in our series

If you missed the seminar, you can find Briana’s presentation slides on our seminars page, where we’ll also soon upload a recording of her talk.

In our next seminar on Tuesday 14 July at 17:00–18:00 BST / 12:00–13:00 EDT / 9:00–10:00 PDT / 18:00–19:00 CEST, we’ll welcome Maria Zapata, Universidad Rey Juan Carlos, Madrid, who will be talking about computational thinking and how we can assess the computational thinking skills of very young children. To join the seminar, simply sign up with your name and email address and we’ll email you the link and instructions. If you attended Briana’s seminar, the link remains the same.

The post Reducing the load: ways to support novice programmers appeared first on Raspberry Pi.

How we are helping you with computing teaching methods

via Raspberry Pi

One aspect of our work as part of the National Centre for Computing Education (NCCE) is producing free materials for teachers about teaching methods and pedagogy in computing. I am excited to introduce these materials to you here!

Teachers are asking us about teaching methods

Computing was included in the national curriculum in England in 2014, and after this, continued professional development (CPD) initiatives became available to support teachers to feel confident in topics they had not previously studied. Much of the CPD focussed on learning about programming, algorithms, networking, and how computers work.

Instructor explaining corporate software specific to trainees in computer class. Man and women sitting at table, using desktop, pointing at monitor and talking. Training concept

More recently however, I’ve found that increasing numbers of teachers are asking for support around teaching methods, particularly for how to support students who find programming and other aspects of computing difficult. Computing is a relatively new subject, but more and more research results are showing how to best teach it.

We offer CPD with our online courses

As part of the NCCE, we produce lots of free resources to support teachers with developing knowledge and skills in all aspects of computing. The NCCE’s Computing Hubs offer remotely delivered sessions, and we produce interactive, in-depth, free online courses for teachers to take over 3 or 4 weeks. Some of these online courses are about subject knowledge, while others focus on how to teach computing, the area referred to as pedagogical content knowledge*. For example, two of our courses are Programming Pedagogy in Primary Schools and Programming Pedagogy in Secondary Schools. Our pedagogy courses draw on the expertise and experience of many computing teachers working with students right now.

We share best practices in computing pedagogy

But that’s not all! We continually share tried and tested strategies for use in the computing classroom to help teachers, and those training to teach, support students more effectively. We believe that computing is for everyone and as such, we need a variety of possible approaches to teaching each topic up our collective sleeves, to ensure accessibility for all our students.

We develop all of this material in collaboration with in-the-classroom-now, experienced teachers and other experts, also drawing upon the latest computing education research. Our aim is to give you great, practical ideas for how to engage students who may be unmotivated or switched off, and new strategies to help you support students’ understanding of more complex computing concepts.

We support you to do classroom action research

One of the findings from decades of educational research is that teacher action research in the classroom is an extremely effective form of CPD! Teacher action research means reflecting on what the barriers to learning are in your classroom, planning an intervention (often in the form of a specific change to your teaching practice), and then evaluating whether it engenders improvement. Doing this has positive impacts both on your expertise as a teacher and on your students’ learning!

To support you with action research, we’re launching a special programme for classroom action research in computing. This takes the form of an online course, facilitated by experts in the field, lasting over a six-month period. Find out more about this opportunity.

Share your experiences with us

Right now we’re in unusual times, and surviving various combinations of home learning and remote delivery with your classes may be your greatest concern. However you’re getting on, we’d love to hear from you about your classroom practice in computing. Your experience with different ways of teaching computing in the classroom will add to our collective understanding about what works for teaching students. You can share your feedback with us, or get in touch with our pedagogy team at research@teachcomputing.org.

Other ways to learn and stay in touch:

 

*Back in 1987, Lee Shulman wrote: “Pedagogical content knowledge represents the blending of content and pedagogy into an understanding of how particular topics, problems or issues are organised, represented, and adapted to the diverse interests and abilities of learners, and presented for instruction.”

The post How we are helping you with computing teaching methods appeared first on Raspberry Pi.

Making the best of it: online learning and remote teaching

via Raspberry Pi

As many educators across the world are currently faced with implementing some form of remote teaching during school closures, we thought this topic was ideal for the very first of our seminar series about computing education research.

Image by Mudassar Iqbal from Pixabay

Research into online learning and remote teaching

At the Raspberry Pi Foundation, we are hosting a free online seminar every second Tuesday to explore a wide variety of topics in the area of digital and computing education. Last Tuesday we were delighted to welcome Dr Lauren Margulieux, Assistant Professor of Learning Sciences at Georgia State University, USA. She shared her findings about different remote teaching approaches and practical tips for educators in the current crisis.

Lauren’s research interests are in educational technology and online learning, particularly for computing education. She focuses on designing instructions in a way that supports online students who do not necessarily have immediate access to a teacher or instructor to ask questions or overcome problem-solving impasses.

A vocabulary for online and blended learning

In non-pandemic situations, online instruction comes in many forms to serve many purposes, both in higher education and in K-12 (primary and secondary school). Much research has been carried out in how online learning can be used for successful learning outcomes, and in particular, how it can be blended with face-to-face (hybrid learning) to maximise the impact of both contexts.

In her seminar talk, Lauren helped us to understand the different ways in which online learning can take place, by sharing with us vocabulary to better describe different ways of learning with and through technology.

Lauren presented a taxonomy for classifying types of online and blended teaching and learning in two dimensions (shown in the image below). These are delivery type (technology or instructor), and whether content is received by learners, or actually being applied in the learning experience.

Lauren Margulieux seminar slide showing her taxonomy for different types of mixed student instruction

In Lauren’s words: “The taxonomy represents the four things that we control as instructors. We can’t control whether our students talk to each other or email each other, or ask each other questions […], therefore this taxonomy gives us a tool for defining how we design our classes.”

This taxonomy illustrates that there are a number of different ways in which the four types of instruction — instructor-transmitted, instructor-mediated, technology-transmitted, and technology-mediated — can be combined in a learning experience that uses both online and face-to-face elements.

Using her taxonomy in an examination (meta-analysis) of 49 studies relating to computer science teaching in higher education, Lauren found a range of different ways of mixing instruction, which are shown in the graph below.

  • Lecture hybrid means that the teaching is all delivered by the teacher, partly face-to-face and partly online.
  • Practice hybrid means that the learning is done through application of content and receiving feedback, which happens partly face-to-face or synchronously and partly online or asynchronously.
  • Replacement blend refers to instruction where lecture and practice takes place in a classroom and part of both is replaced with an online element.
  • Flipped blend instruction is where the content is transmitted through the use of technology, and the application of the learning is supported through an instructor. Again, the latter element can also take place online, but it is synchronous rather than asynchronous — as is the case in our current context.
  • Supplemental blend learning refers to instruction where content is delivered face-to-face, and then practice and application of content, together with feedback, takes place online — basically the opposite of the flipped blend approach.

Lauren Margulieux seminar slide showing learning outcomes of different types of mixed student instruction

Lauren’s examination found that the flipped blend approach was most likely to demonstrate improved learning outcomes. This is a useful finding for the many schools (and universities) that are experimenting with a range of different approaches to remote teaching.

Another finding of Lauren’s study was that approaches that involve the giving of feedback promoted improved learning. This has also been found in studies of assessment for learning, most notably by Black and Wiliam. As Lauren pointed out, the implication is that the reason blended and flipped learning approaches are the most impactful is that they include face-to-face or synchronous time for the educator to discuss learning with the students, including giving feedback.

Lauren’s tips for remote teaching

Of course we currently find ourselves in the midst of school closures across the world, so our only option in these circumstances is to teach online. In her seminar talk, Lauren also included some tips from her own experience to help educators trying to support their students during the current crisis:

  • Align learning objectives, instruction, activities, assignments, and assessments.
  • Use good equipment: headphones to avoid echo and a good microphone to improve clarity and reduce background noise.
  • Be consistent in disseminating information, as there is a higher barrier to asking questions.
  • Highlight important points verbally and visually.
  • Create ways for students to talk with each other, through discussions, breakout rooms, opportunities to talk when you aren’t present, etc.
  • Use video when possible while talking with your students.
    Give feedback frequently, even if only very brief.

Although Lauren’s experience is primarily from higher education (post-18), this advice is also useful for K-12 educators.

What about digital equity and inclusion?

All our seminars include an opportunity to break out into small discussion groups, followed by an opportunity to ask questions of the speaker. We had an animated follow-up discussion with Lauren, with many questions focused on issues of representation and inclusion. Some questions related to the digital divide and how we could support learners who didn’t have access to the technology they need. There were also questions from breakout groups about the participation of groups that are typically under-represented in computing education in online learning experiences, and accessibility for those with special educational needs and disabilities (SEND). While there is more work needed in this area, there’s also no one-size-fits-all approach to working with students with special needs, whether that’s due to SEND or to material resources (e.g. access to technology). What works for one student based on their needs might be entirely ineffective for others. Overall, the group concluded that there was a need for much more research in these areas, particularly at K-12 level.

Much anxiety has been expressed in the media, and more formally through bodies such as the World Economic Forum and UNESCO, about the potential long-lasting educational impact of the current period of school closures on disadvantaged students and communities. Research into the most inclusive way of supporting students through remote teaching will help here, as will the efforts of governments, charities, and philanthropists to provide access to technology to learners in need.

At the Raspberry Pi Foundation, we offer lots of free resources for students, educators, and parents to help them engage with computing education during the current school closures and beyond.

How should the education community move forward?

Lauren’s seminar made it clear to me that she was able to draw on decades of research studies into online and hybrid learning, and that we should take lessons from these before jumping to conclusions about the future. In both higher education (tertiary, university) and K-12 (primary, secondary) education contexts, we do not yet know the educational impact of the teaching experiments we have found ourselves engaging in at short notice. As Charles Hodges and colleagues wrote recently in Educause, what we are currently engaging in can only really be described as emergency remote teaching, which stands in stark contrast to planned online learning that is designed much more carefully with pedagogy, assessment, and equity in mind. We should ensure we learn lessons from the online learning research community rather than making it up as we go along.

Today many writers are reflecting on the educational climate we find ourselves in and on how it will impact educational policy and decision-making in the future. For example, an article from the Brookings Institution suggests that the experiences of home teaching and learning that we’ve had in the last couple of months may lead to both an increased use of online tools at home, an increase in home schooling, and a move towards competency-based learning. An article by Jo Johnson (President’s Professorial Fellow at King’s College London) on the impact of the pandemic on higher education, suggests that traditional universities will suffer financially due to a loss of income from international students less likely to travel to universities in the UK, USA, and Australia, but that the crisis will accelerate take-up of online, distance-learning, and blended courses for far-sighted and well-organised institutions that are ready to embrace this opportunity, in sum broadening participation and reducing elitism. We all need to be ready and open to the ways in which online and hybrid learning may change the academic world as we know it.

Next up in our seminar series

If you missed this seminar, you can find Lauren’s presentation slides and a recording of her talk on our seminars page.

Next Tuesday, 19 May at 17:00–18:00 BST, we will welcome Juan David Rodríguez from the Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado (INTEF) in Spain. His seminar talk will be about learning AI at school, and about a new tool called LearningML. To join the seminar, simply sign up with your name and email address and we’ll email the link and instructions. If you attended Lauren’s seminar, the link remains the same.

The post Making the best of it: online learning and remote teaching appeared first on Raspberry Pi.

Cambridge Computing Education Research Symposium – recap of our online event

via Raspberry Pi

On Wednesday, we hosted the first-ever Cambridge Computing Education Research Symposium online. Research in computing education, particularly in school and for young people, is a young field compared to maths and science education, and we do not have much in terms of theoretical foundations. It is not a field that has received a lot of funding, so we cannot yet look to large-scale, longitudinal, empirical studies for evidence. Therefore, further research on how best to teach, learn, and assess computing is desperately needed. We also need to investigate ways of inspiring and motivating all young people in an area which is increasingly important for their future.

That’s why at the Raspberry Pi Foundationwe have made research a key part of our new strategy, and that’s why we worked with the University of Cambridge to hold this event.

Moving the symposium online

This was to be our first large-scale research event, held jointly with the University of Cambridge Department of Computer Science and Technology. Of course, current circumstances made it necessary for us to turn the symposium from a face-to-face into an online event at short notice.

Screengrab from the Cambridge Computing Education Research Symposium 2020 online event

An enthusiastic team took on the challenge, and we were delighted with how well the way the day went! You can see what participants shared throughout the day on Twitter.

Keynote presentation

Our keynote speaker was Dr Natalie Rusk of MIT and the Scratch Foundation, who shared her passion for digital creativity using Scratch.

Dr Natalie Rusk from the MIT Media Lab

We were excited to see images from early versions of Scratch and how it had developed over the years. Plus, Natalie revealed the cat blocks that were available on 1 April only — I had completely forgotten the day of the symposium was April Fools’ Day! The focus of Natalie’s presentation was on creativity, invention, tinkering, and the development of ideas over time, and she explored case studies of two ‘Scratchers’ who took a very different approach to working in the Scratch community on projects. The talk was well received by all.

Screengrab from the Cambridge Computing Education Research Symposium 2020 online event

Paper presentations

We heard from researchers from a range of institutions on topics under these themes:

  • Working with teachers on computing education research
  • Assessment tools and techniques
  • Perceptions and attitudes about computing
  • Theoretical frameworks used for computing education

Highlights for me were Ethel Tshukudu’s analysis of the way students transfer from one programming language to another, in which she draws on semantic transfer theory; and Paul Curzon’s application of Karl Maton’s semantic wave theory (taken from linguistics) to computing education.

The symposium’s focus was computing for young people, and much of the research presented was directly grounded in work with teachers and students in learning situations. Lynne Blair shared an interesting study highlighting female participation in A level computer science classes, which found the feeling of a lack of belonging among young women, a finding that echoes existing research around computing education and gender. Fenia Aivaloglou from the University of Leiden, Netherlands, considered the barriers faced by learners and teachers in extra-curricular code clubs, and Alison Twiner and Jo Shillingworth from the University of Cambridge shared a study on engaging young people in work-related computing projects.

We also heard how tools for supporting learners are developing, for example machine learning techniques to process natural language answers to questions on the free online learning platforms Isaac Computer Science and Isaac Physics.

Poster presentations

For the poster sessions, we divided into separate sessions so that the poster presenters could display and discuss their posters with a smaller group of people. This enabled more in-depth discussion about the topic being presented, which participants appreciated at this large online event. The 11 posters covered a wide range of topics from data visualisations in robotics to data-driven dance.

Screengrab from the Cambridge Computing Education Research Symposium 2020 online event

We showcased some of our own work on progression mapping with learning graphs for the NCCE Resource Repository; the Isaac Computer Science A level content platform; and our research into online learning with our free online courses for teachers.

Running an online symposium — what is it like?

From having successfully hosted this event online, we learned many lessons that we want to put into practice in future online events being offered by the Raspberry Pi Foundation.

There’s a plethora of tools available, and they all have their pros and cons (we used Google Meet). It’s my view that the tool is less important than the preparation needed for a large-scale online event, which is significant! The organising team hosted technical run-throughs with all presenters in the two days before the event, and instigated a ‘green room’ for all presenters to check their setups again five to ten minutes before their speaking slot. This helped to avoid a whole myriad of potential technical difficulties.

Screengrab from the Cambridge Computing Education Research Symposium 2020 online event

I’m so grateful to the great team at the Raspberry Pi Foundation, who worked behind the scenes all day to make sure that the participants and presenters got the most out of the event!

Stay in touch!

  • On the Research Symposium web page, you can now download the symposium’s abstract booklet. We will shortly be sharing recordings of the symposium’s presentations and files of slides and posters there as well.
  • When we moved the symposium online, we postponed two pre-symposium events: a workshop on gender balance, and a workshop on research-to-practice; we’re hoping to hold these as in-person events in the autumn.
  • Meanwhile, we are planning a series of online seminars, set to start on Tuesday 21 April at 17:00 BST and continue throughout the summer at two-week intervals.

If you’re interested in receiving a regular update about these and other research activities of ours, sign up to our newsletter.

We look forward to building a community of researchers and to sharing more of our work with you over the coming years.

The post Cambridge Computing Education Research Symposium – recap of our online event appeared first on Raspberry Pi.