Tag Archives: Robotics

SoFi, the underwater robotic fish

via Raspberry Pi

With the Greenland shark finally caught on video for the very first time, scientists and engineers are discussing the limitations of current marine monitoring technology. One significant advance comes from the CSAIL team at Massachusetts Institute of Technology (MIT): SoFi, the robotic fish.

A Robotic Fish Swims in the Ocean

More info: http://bit.ly/SoFiRobot Paper: http://robert.katzschmann.eu/wp-content/uploads/2018/03/katzschmann2018exploration.pdf

The untethered SoFi robot

Last week, the Computer Science and Artificial Intelligence Laboratory (CSAIL) team at MIT unveiled SoFi, “a soft robotic fish that can independently swim alongside real fish in the ocean.”

MIT CSAIL underwater fish SoFi using Raspberry Pi

Directed by a Super Nintendo controller and acoustic signals, SoFi can dive untethered to a maximum of 18 feet for a total of 40 minutes. A Raspberry Pi receives input from the controller and amplifies the ultrasound signals for SoFi via a HiFiBerry. The controller, Raspberry Pi, and HiFiBerry are sealed within a waterproof, cast-moulded silicone membrane filled with non-conductive mineral oil, allowing for underwater equalisation.

MIT CSAIL underwater fish SoFi using Raspberry Pi

The ultrasound signals, received by a modem within SoFi’s head, control everything from direction, tail oscillation, pitch, and depth to the onboard camera.

As explained on MIT’s news blog, “to make the robot swim, the motor pumps water into two balloon-like chambers in the fish’s tail that operate like a set of pistons in an engine. As one chamber expands, it bends and flexes to one side; when the actuators push water to the other channel, that one bends and flexes in the other direction.”

MIT CSAIL underwater fish SoFi using Raspberry Pi

Ocean exploration

While we’ve seen many autonomous underwater vehicles (AUVs) using onboard Raspberry Pis, SoFi’s ability to roam untethered with a wireless waterproof controller is an exciting achievement.

“To our knowledge, this is the first robotic fish that can swim untethered in three dimensions for extended periods of time. We are excited about the possibility of being able to use a system like this to get closer to marine life than humans can get on their own.” – CSAIL PhD candidate Robert Katzschmann

As the MIT news post notes, SoFi’s simple, lightweight setup of a single camera, a motor, and a smartphone lithium polymer battery set it apart it from existing bulky AUVs that require large motors or support from boats.

For more in-depth information on SoFi and the onboard tech that controls it, find the CSAIL team’s paper here.

The post SoFi, the underwater robotic fish appeared first on Raspberry Pi.

Petoi: a Pi-powered kitty cat

via Raspberry Pi

A robot pet is the dream of many a child, thanks to creatures such as K9, Doctor Who’s trusted companion, and the Tamagotchi, bleeping nightmare of parents worldwide. But both of these pale in comparison (sorry, K9) to Petoi, the walking, meowing, live-streaming cat from maker Rongzhong Li.

Petoi: OpenCat Demo

Mentioned on IEEE Spectrum: https://spectrum.ieee.org/automaton/robotics/humanoids/video-friday-boston-dynamics-spotmini-opencat-robot-engineered-arts-mesmer-uncanny-valley More reads on Hackster: https://www.hackster.io/petoi/opencat-845129 优酷: http://v.youku.com/v_show/id_XMzQxMzA1NjM0OA==.html?spm=a2h3j.8428770.3416059.1 We are developing programmable and highly maneuverable quadruped robots for STEM education and AI-enhanced services. Its compact and bionic design makes it the only affordable consumer robot that mimics various mammal gaits and reacts to surroundings.


Not only have cats conquered the internet, they also have a paw firmly in the door of many makerspaces and spare rooms — rooms such as the one belonging to Petoi’s owner/maker, Rongzhong Li, who has been working on this feline creation since he bought his first Raspberry Pi.

Petoi Raspberry Pi Robot Cat

Petoi in its current state – apple for scale in lieu of banana

Petoi is just like any other housecat: it walks, it plays, its ribcage doubles as a digital xylophone — but what makes Petoi so special is Li’s use of the project as a platform for study.

I bought my first Raspberry Pi in June 2016 to learn coding hardware. This robot Petoi served as a playground for learning all the components in a regular Raspberry Pi beginner kit. I started with craft sticks, then switched to 3D-printed frames for optimized performance and morphology.

Various iterations of Petoi have housed various bits of tech, 3D-printed parts, and software, so while it’s impossible to list the exact ingredients you’d need to create your own version of Petoi, a few components remain at its core.

Petoi Raspberry Pi Robot Cat — skeleton prototype

An early version of Petoi, housed inside a plastic toy helicopter frame

A Raspberry Pi lives within Petoi and acts as its brain, relaying commands to an Arduino that controls movement. Li explains:

The Pi takes no responsibility for controlling detailed limb movements. It focuses on more serious questions, such as “Who am I? Where do I come from? Where am I going?” It generates mind and sends string commands to the Arduino slave.

Li is currently working on two functional prototypes: a mini version for STEM education, and a larger version for use within the field of AI research.

A cat and a robot cat walking upstairs Petoi Raspberry Pi Robot Cat

You can read more about the project, including details on the various interactions of Petoi, on the hackster.io project page.

Not quite ready to commit to a fully grown robot pet for your home? Why not code your own pixel pet with our free learning resource? And while you’re looking through our projects, check out our other pet-themed tutorials such as the Hamster party cam, the Infrared bird box, and the Cat meme generator.

The post Petoi: a Pi-powered kitty cat appeared first on Raspberry Pi.

Playing tic-tac-toe against a Raspberry Pi at Maker Faire

via Raspberry Pi

At Maker Faire New York, we met up with student Toby Goebeler of Dover High School, Pennsylvania, to learn more about his Tic-Tac-Toe Robot.

Play Tic-Tac-Toe against a Raspberry Pi #MFNYC

Uploaded by Raspberry Pi on 2017-12-18.

Tic-tac-toe with Dover Robotics

We came to see Toby and Brian Bahn, physics teacher for Dover High School and leader of the Dover Robotics club, so they could tell us about the inner workings of the Tic-Tac-Toe Robot project, and how the Raspberry Pi fit within it. Check out our video for Toby’s explanation of the build and the software controlling it.

Wooden robotic arm — Toby Goebeler Tic-Tac-Toe arm Raspberry Pi

Toby’s original robotic arm prototype used a weight to direct the pen on and off the paper. He later replaced this with a servo motor.

Toby documented the prototyping process for the robot on the Dover Robotics blog. Head over there to hear more about the highs and lows of building a robotic arm from scratch, and about how Toby learned to integrate a Raspberry Pi for both software and hardware control.

Wooden robotic arm playing tic-tac-toe — Toby Goebeler Tic-Tac-Toe arm Raspberry Pi

The finished build is a tic-tac-toe beast, besting everyone who dares to challenge it to a game.

And in case you’re wondering: no, none of the Raspberry Pi team were able to beat the Tic-Tac-Toe Robot when we played against it.

Your turn

We always love seeing Raspberry Pis being used in schools to teach coding and digital making, whether in the classroom or during after-school activities such as the Dover Robotics club and our own Code Clubs and CoderDojos. If you are part of a coding or robotics club, we’d love to hear your story! So make sure to share your experiences and projects in the comments below, or via our social media accounts.

The post Playing tic-tac-toe against a Raspberry Pi at Maker Faire appeared first on Raspberry Pi.

Low-tech Raspberry Pi robot

via Raspberry Pi

Robot-builder extraordinaire Clément Didier is ushering in the era of our cybernetic overlords. Future generations will remember him as the creator of robots constructed from cardboard and conductive paint which are so easy to replicate that a robot could do it. Welcome to the singularity.

Bare Conductive on Twitter

This cool robot was made with the #PiCap, conductive paint and @Raspberry_Pi by @clementdidier. Full tutorial: https://t.co/AcQVTS4vr2 https://t.co/D04U5UGR0P

Simple interface

To assemble the robot, Clément made use of a Pi Cap board, a motor driver, and most importantly, a tube of Bare Conductive Electric Paint. He painted the control interface onto the cardboard surface of the robot, allowing a human, replicant, or superior robot to direct its movements simply by touching the paint.

Clever design

The Raspberry Pi 3, the motor control board, and the painted input buttons interface via the GPIO breakout pins on the Pi Cap. Crocodile clips connect the Pi Cap to the cardboard-and-paint control surface, while jumper wires connect it to the motor control board.

Raspberry Pi and bare conductive Pi Cap

Sing with me: ‘The Raspberry Pi’s connected to the Pi Cap, and the Pi Cap’s connected to the inputs, and…’

Two battery packs provide power to the Raspberry Pi, and to the four independently driven motors. Software, written in Python, allows the robot to respond to inputs from the conductive paint. The motors drive wheels attached to a plastic chassis, moving and turning the robot at the touch of a square of black paint.

Artistic circuit

Clément used masking tape and a paintbrush to create the control buttons. For a human, this is obviously a fiddly process which relies on the blocking properties of the masking tape and a steady hand. For a robot, however, the process would be a simple, freehand one, resulting in neatly painted circuits on every single one of countless robotic minions. Cybernetic domination is at (metallic) hand.

The control surface of the robot, painted with bare conductive paint

One fiddly job for a human, one easy task for robotkind

The instructions and code for Clément’s build can be found here.

Low-tech solutions

Here at Pi Towers, we love seeing the high-tech Raspberry Pi integrated so successfully with low-tech components. In addition to conductive paint, we’ve seen cardboard laptops, toilet roll robots, fruit drum kits, chocolate box robots, and hamster-wheel-triggered cameras. Have you integrated low-tech elements into your projects (and potentially accelerated the robot apocalypse in the process)? Tell us about it in the comments!


The post Low-tech Raspberry Pi robot appeared first on Raspberry Pi.

SKELLY the Skeleton Robot

via Arduino Blog

While it might seem like a long time away to most people, if you’re looking to make an amazing automated display for Halloween, it’s time to start planning! One idea would be an automated skeleton robot like SKELLY.

This particular robot was built using an Arduino Mega, a Cytron PS2 Shield, a modified sensor shield, and a wireless PS2 controller. SKELLY is equipped with a total of eight servos: six for bending his shoulders, elbows and wrists, one for running his mouth, and another for turning his head. There is also a pair of LEDs for eyes, and a small motor in his head with a counterweight that allows him to shake.

SKELLY is programmed using the Visuino visual programming environment. As seen in the videos below, the robot–which is the author’s first–is quite nimble, waving and moving along with an automatic piano!

Landmine-clearing Pi-powered C-Turtle

via Raspberry Pi

In an effort to create a robot that can teach itself to navigate different terrains, scientists at Arizona State University have built C-Turtle, a Raspberry Pi-powered autonomous cardboard robot with turtle flippers. This is excellent news for people who live in areas with landmines: C-Turtle is a great alternative to current landmine-clearing robots, since it is much cheaper, and much easier to assemble.

C-Turtle ASU

Photo by Charlie Leight/ASU Now

Why turtle flippers?

As any user of Python will tell you*, turtles are amazing. Moreover, as the evolutionary biologist of the C-Turtle team, Andrew Jansen, will tell you, considering their bulk** turtles move very well on land with the help of their flippers. Consequently, the team tried out prototypes with cardboard flippers imitating the shape of turtle flippers. Then they compared their performance to that of prototypes with rectangular or oval ‘flippers’. And 157 million years of evolution*** won out: the robots with turtle flippers were best at moving forward.

C-Turtle ASU

Field testing with Assistant Professor Heni Ben Amor, one of the C-Turtle team’s leaders (Photo by Charlie Leight/ASU Now)

If it walks like a C-Turtle…

But the scientists didn’t just slap turtle flippers on their robot and then tell it to move like a turtle! Instead, they implemented machine learning algorithms on the Pi Zero that serves as C-Turtle’s brain, and then simply let the robot do its thing. Left to its own devices, it used the reward and punishment mechanisms of its algorithms to learn the most optimal way of propelling itself forward. And lo and behold, C-Turtle taught itself to move just like a live turtle does!

Robotic C-Turtle

This is “Robotic C-Turtle” by ASU Now on Vimeo, the home for high quality videos and the people who love them.

Landmine clearance with C-Turtle

Robots currently used to clear landmines are very expensive, since they are built to withstand multiple mine explosions. Conversely, the total cost of C-Turtle comes to about $70 (~£50) – that’s cheap enough to make it disposable. It is also more easily assembled, it doesn’t need to be remotely controlled, and it can learn to navigate new terrains. All this makes it perfect for clearing minefields.

BBC Click on Twitter

Meet C-Turtle, the landmine detecting robot. VIDEO https://t.co/Kjc6WxRC8I

C-Turtles in space?****

The researchers hope that robots similar to C-Turtle can used for space exploration. They found that the C-Turtle prototypes that had performed very well in the sandpits in their lab didn’t really do as well when they were released in actual desert conditions. By analogy, robots optimized for simulated planetary conditions might not actually perform well on-site. The ASU scientists imagine that C-Turtle materials and a laser cutter for the cardboard body could be carried on board a Mars mission. Then Martian C-Turtle design could be optimized after landing, and the robot could teach itself how best to navigate real Martian terrain.

There are already Raspberry Pis in space – imagine if they actually made it to Mars! Dave would never recover

Congrats to Assistant Professors Heni Ben Amor and Daniel Aukes, and to the rest of the C-Turtle team, on their achievement! We at Pi Towers are proud that our little computer is part of this amazing project.

C-Turtle ASU

Photo by Charlie Leight/ASU Now

* Check out our Turtley amazing resource to find out why!

** At a length of 7ft, leatherback sea turtles can weigh 1,500lb!

*** That’s right: turtles survived the extinction of the dinosaurs!

**** Is anyone else thinking of Great A’Tuin right now? Anyone? Just me? Oh well.

The post Landmine-clearing Pi-powered C-Turtle appeared first on Raspberry Pi.