Tag Archives: Robotics

Flingbot is a robot that flings paint at a canvas to create art

via Arduino Blog

Jackson Pollock was famous for his unique style of splattering large blobs of paint across a canvas, and it was this technique that JBV Creative was trying to imitate. But rather than working by hand to painstakingly dip a brush into paint and then flinging it many times over, he wanted to build a robot that could do this task for him while still creating art. 

The main part of the Flingbot, the name JBV gave to his system, is comprised of a catapult arm that is capable of both rotating and adjusting how far it can throw paint. A servo motor at the back pulls an elastic band a certain amount based on the desired distance, and a second one releases a pin to perform the launching action. As another parameter for generating abstract art, the silicone scoop itself can bend to change its shape. Every servo motor is connected to a single SSC-32U servo controller board that receives commands from an Arduino Uno.

Paint gets dispensed from one of the 12 total reservoirs that each has a gravity-feeder out its base with a servo motor that controls how much paint is deposited into the scoop. Once all of the paint has been collected for a launch, the Uno adjusts the angle and tension of the arm and finally releases the paint. 

To see how JBV Creative constructed this robot and a glimpse of the wildly unpredictable artwork it produced, check out his video below as well as his project write-up here.

The post Flingbot is a robot that flings paint at a canvas to create art appeared first on Arduino Blog.

Robotic waiter learning to serve drinks

via Raspberry Pi

The maker of this robotic waiter had almost all of the parts for this project just sat around collecting dust on a shelf. We’re delighted they decided to take the time to pick up the few extra bits they needed online, then take the extra hour (just an hour?!) to write a program in Python to get this robotic waiter up and running.

It’s learning! Bartending is hard

We are also thrilled to report (having spotted it in the reddit post we found this project on) that the maker had “so much fun picking up and sometimes crushing small things with this claw.” The line between serving drinks and wanting to crush things is thinner than you might imagine.

And in even better news, all the code you need to recreate this build is on GitHub.

Robo arm, HAT, and Raspberry Pi all together

Parts list

First successful straw-drop. Perfecto!

reddit comments bantz

One of our favourite things about finding Raspberry Pi-powered projects on reddit is the comments section. It’s (usually) the perfect mix of light adoration, constructive suggestions, and gateways to tangents we cannot ignore.

Like this one recalling the Rick and Morty sketch in which a cute tiny robot realises their sole purpose is to pass butter:

No swears in this scene! But it is an adult cartoon in general

And also this one pointing us to another robotic arm having a grand old time picking up a tiny ball, sending it down a tiny slide, and then doing it all over again. Because it’s important we know how to make our own fun:

We also greatly enjoyed the fact that the original maker couldn’t use the Rick and Morty “what is my purpose” line to share this project because they are such an uber fan that they already used it for a project they posted just the day before. This cute creation’s sole reason for existing is to hold an Apple pencil while looking fabulous. And we are HERE for it:

The post Robotic waiter learning to serve drinks appeared first on Raspberry Pi.

This Arduino-powered robotic fish swims like the real thing

via Arduino Blog

Biomimicry is often used to take the designs that nature has perfected over a period of millions of years and incorporate them into our own technology. One maker who goes by mcp on YouTube took this idea one step further and created a fish that can swim in the water like the actual creature. By carefully analyzing and studying the patterns a fish makes while it scurries through a lake, he was able to reduce these motions down to just a few joints. 

The body of this DIY robotic fish was constructed from a series of four joints that each contain a single mini servo motor to control their movements. Next, an Arduino Nano was selected as the microcontroller board due to its small size and ample amounts of GPIO pins. In order for the fish to sense if there is an obstacle in the way and avoid it, the device also features “eyes” that utilize IR emitter/receiver pairs.

Once the spine of servo motors was combined with the Arduino and a set of LiPo batteries, mcp slipped over a skin made from a waterproof latex-like material that aids in moving throughout the water. In his video below, the DIY robotic fish can be seen oscillating freely through a bathtub full of water, along with a pool. His device works very well as it generates plenty of forward force to swim wherever it wants while avoiding obstacles. 

The post This Arduino-powered robotic fish swims like the real thing appeared first on Arduino Blog.

Celebrating the community: Avye

via Raspberry Pi

We’re excited to share another incredible story from the community — the second in our new series of inspirational short films that celebrate young tech creators across the world.

A young teenager with glasses smiles
Avye discovered robotics at her local CoderDojo and is on a mission to get more girls like her into tech.

These stories showcase some of the wonderful things that young people are empowered to do when they learn how to create with technology. We hope that they will inspire many more young people to get creative with technology too!

Meet Avye

This time, you will meet an accomplished, young community member who is on a quest to encourage more girls to join her and get into digital making.

Help us celebrate Avye by liking and sharing her story on Twitter, Linkedin, or Facebook!

For as long as she can remember, Avye (13) has enjoyed creating things. It was at her local CoderDojo that seven-year-old Avye was introduced to the world of robotics. Avye’s second-ever robot, the Raspberry Pi–powered Voice O’Tronik Bot, went on to win the Hardware category at our Coolest Projects UK event in 2018.

A girl shows off a robot she has built
Avye showcased her Raspberry Pi–powered Voice O’Tronik Bot at Coolest Projects UK in 2018.

Coding and digital making have become an integral part of Avye’s life, and she wants to help other girls discover these skills too. She says, I believe that it’s important for girls and women to see and be aware of ordinary girls and women doing cool things in the STEM world.” Avye started running her own workshops for girls in their community and in 2018 founded Girls Into Coding. She has now teamed up with her mum Helene, who is committed to helping to drive the Girls Into Coding mission forwards.

I want to get other girls like me interested in tech.


Avye has received multiple awards to celebrate her achievements, including the Princess Diana Award and Legacy Award in 2019. Most recently, in 2020, Avye won the TechWomen100 Award, the Women in Tech’s Aspiring Teen Award, and the FDM Everywoman in Tech Award!

We cannot wait to see what the future has in store for her. Help us celebrate Avye and inspire others by liking and sharing her story on Twitter, Linkedin, or Facebook!

The post Celebrating the community: Avye appeared first on Raspberry Pi.

James Bruton’s robot uses three ball-shaped wheels to move in any direction

via Arduino Blog

Wheeled robots normally have wheels that move in a single axis and steer by using either differential speeds or by pivoting some kind of guide wheel. However, this leads to some drawbacks, the most obvious being an inability to move in really tight spaces. When presented with this challenge, YouTuber James Bruton came up with a great design for a highly mobile robot platform that employs a novel setup to move in any direction. Inspired by the work of researchers at Osaka University in Japan, the omni wheel uses a single drive shaft to spin, yet nearly every surface has a way to move along the ground. 

After designing his robot in Fusion 360 and 3D printing each part, Bruton assembled the wheels and added a pulley to each drive shaft which could be spun by a motor sitting directly above. An Arduino Mega is tasked with controlling each of the three BTS7960 motor drivers and it receives commands via an nRF24L01 radio module. All of the drive components are powered by a single 3-cell LiPo battery pack, while the main board is supplied current by a USB battery bank. 

By spinning certain wheels at the correct speed, straight line motion can be produced, as shown in the video below. Bruton tested his robot by driving over carpet, tile, aluminum extrusions, and even a plastic lid, which did very well across everything except the lid. This robot has countless potential uses, such as a garbage collection device for around the house. 

Code and design files for the project are available on GitHub.

The post James Bruton’s robot uses three ball-shaped wheels to move in any direction appeared first on Arduino Blog.

3D-printed mobile robot platform based on the Arduino Due

via Arduino Blog

Although an Arduino can be a great way to provide computing power for a mobile robot platform, you’ll need a variety of other electronics and mechanical components to get it going. In his write-up, computer science student Niels Post outlines how he constructed a robot that travels via two stepper motors, along with casters to keep it upright. The round chassis is 3D-printed and runs on three rechargeable 18650 batteries.

The platform is based on an Arduino Due, with stepper drivers and a custom PCB to take care of the wiring. The robot has no sensors or navigation aids onboard, but instead relies on an nRF24L01+ module to communicate with a Raspberry Pi that hosts the web interface for control and livestream viewing. This setup employs a webcam to sense and direct the robot through its environment using printed markers.

More details on Post’s project can be found in his Instructables tutorial.