Sequence controller

via Dangerous Prototypes

Eric Gunnerson has been working on a sequence controller project:

Yeah. Those pins are beautifully aligned a very precise 0.1” from where they are supposed to be…
Pro tip: Print out your design and put your components on it so that you can check the design.
Meta pro tip: Follow your pro tips.
Anyway, that’s not the only problem; it turns out that the power and LED parts of the connector are right underneath the end of the board, so you can’t use a normal header on them (you could use a right-angle one if you wanted), so I did a new revision of the board with 1.0” rather than 1.1” for the ESP and extended the board so the connectors are out on the end. That’s on the slow ship from China right now.

See the full post on Eric’s Arcana and RiderX blog.

To Infinity and Beyond…the SIK Programmed with Arduino (Part 3)

via SparkFun: Commerce Blog

Today we're continuing our feature on all the tutorials and documentation you can use to take the SparkFun SIK and Arduino Uno SIK beyond the guidebook. Here are some additional resources and videos to help you along in learning more about the world of electronics with Arduino.

Installing an Arduino Library

How do I install a custom Arduino library? It's easy! This tutorial will go over how to install an Arduino library using the Arduino Library Manager. For libraries not linked with the Arduino IDE, we will also go over manually installing an Arduino library.

How to Power a Project

A tutorial to help figure out the power requirements of your project.

Arduino Shields

All things Arduino Shields. What they are and how to assemble them.

Choosing an Arduino for Your Project

Examining the diverse world of Arduino boards and understanding the differences between them before choosing one for a project.


comments | comment feed

Chinese cable and connector vocabulary

via Dangerous Prototypes

Bus Pirate prototype “Ultra” v1c will use a 0.5mm flex cable (FFC/FPC) to connect the display board. Of course we could just order the standard parts from Mouser or SZLCSC, but rooting around on Taobao is fun and gives a better idea of the range of stuff out there. Here’s some Chinese vocabulary that helped us order parts.

Cables that are connected 1:1, pin one of one connector is wired to pin 1 of the other connector, are called 反向. Cables that are connected 1:N, pin one of one connector is wired to the highest number pin of the other connector, are called 同向. We ordered the wrong version of the 1.25mm display cable for v1b, but fortunately the crimps can be carefully removed and replaced in reverse order. This won’t be an option with the flex connector.

Most FPC/FFC connectors are available in two types. Metal contacts on the bottom of the connector slot are called 下接. Metal contacts along the top of the connector slot are called 上接.

Orientation is really important because FPC/FFC cables generally only have contacts exposed on one side of each end. FPC/FFC cables are also available in 反向 / 同向 (1:1/1:N), meaning the exposed contacts are on the same side or opposite side of the ends. We’ll post some photos of these cables when they arrive.

Here’s what you can expect from Arduino at Maker Faire Rome 2019

via Arduino Blog

We’re just days away from Maker Faire Rome — The European Edition, taking place October 18-20th at Fiera di Roma. This year’s Arduino booth, which will be located inside Pavilion 8, will be broken up into three areas:

  • Makers: We will be showcasing the Dark Side Rover, the grand prize winner of the Ultimate Arduino Challenge contest. Nicolas Gilbert and his class, the authors of the project, will be at the booth and organize some practical demonstrations with the robots. 
  • Arduino IoT Cloud and connected products: In this section, we’ll highlight two demos connected to the Arduino IoT Cloud. There will also be an exhibition of our MKR family boards, featuring a range of connectivity options like WiFi, Bluetooth, NB-IoT, Sigfox and LoRa.

The Arduino booth will include an interactive basketball installation as well — all visitors will have the opportunity to win some Arduino boards, goodies, and much more! 

Finally, members of the Arduino team will join Maker Faire Rome’s program all weekend long. 

  • On Saturday, October 19th, Massimo will give his traditional ‘State of Arduino,’ discussing the latest developments and future challenges for the company (4pm, Stage B in Pavilion 8).

If you are planning to attend, please visit Maker Faire’s Rome website to find the full agenda, plus other important information. Finally, don’t forget to invite your friends and post on social media tagging @Arduino and using the hashtag #MFR19.

Tim Peake and Astro Pi winners meet at Rooke Award ceremony

via Raspberry Pi

Engineering has always been important, but never more so than now, as we face global challenges and need more brilliant young minds to solve them. Tim Peake, ESA astronaut and one of our Trustees, knows this well, and is a big advocate of engineering, and of STEM more broadly.

Tim Peake giving a talk at the Science Museum

That’s why during his time aboard the International Space Station for the Principia mission, Tim was involved in the deployment of two Astro Pis, special Raspberry Pi computers that have been living on the ISS ever since, making it possible for us to run our annual European Astro Pi Challenge.

Tim Peake talking about the Astro Pi Challenge at an event at the Science Museum

Tim spoke about the European Astro Pi Challenge at today’s award ceremony

Thank you, Major Tim

Tim played a huge part in the first Astro Pi Challenge, and he has helped us spread the word about Astro Pi and the work of the Raspberry Pi Foundation ever since.

Tim Peake and a moderator in a Q&A at the Science Museum

Earlier this year, Tim was awarded the 2019 Royal Academy of Engineering Rooke Award for his work promoting engineering to the public, following a nomination by Raspberry Pi co-founder and Fellow of the Academy Pete Lomas. Pete says:

“As part of Tim Peake’s Principia mission, he personally spearheaded the largest education and outreach initiative ever undertaken by an ESA astronaut. Tim actively connects space exploration with the requirement for space engineering.

As a founder of Raspberry Pi, I was thrilled that Tim acted as a personal ambassador for the Astro Pi programme. This gives young people across Europe the opportunity to develop their computing skills by writing computer programs that run on the specially adapted Raspberry Pi computers onboard the ISS.” – Pete Lomas

Today, Tim received the Rooke Award in person, at a celebratory event held at the Science Museum in London.

Royal Academy of Engineering CEO Dr Hayaatun Sillem presents Tim with the 2019 Rooke Award for public engagement with engineering, in recognition of his nationwide promotion of engineering and space.

Royal Academy of Engineering CEO Dr Hayaatun Sillem presents Tim with the 2019 Rooke Award for public engagement with engineering, in recognition of his nationwide promotion of engineering and space

Four hundred young people got to attend the event with him, including two winning Astro Pi teams. Congratulations to Tim, and congratulations to those Astro Pi winners who got to meet a real-life astronaut!

Tim Peake observes a girl writing code that will run in space

Astro Pi is going from strength to strength

Since Tim’s mission on the ISS, the Astro Pi Challenge has evolved, and in collaboration with ESA Education, we now offer it in the form of two missions for young people every year:

  • Mission Zero, which allows young people to write a short Python programme to display a message to the astronauts aboard the ISS. This mission can be completed in an afternoon, all eligible entries are guaranteed to run in space, and you can submit entries until 20 March 2020. More about Astro Pi: Mission Zero
  • Mission Space Lab, which challenges teams of young people to design and create code to run a scientific experiment aboard the ISS using the Astro Pis’ sensors. This mission is competitive and runs over eight months, and you need to send in your team’s experiment idea by 25 October 2019. More about Astro Pi: Mission Space Lab

If you’re thinking “I wish this sort of thing had been around when I was young…”

…then help the young people in your life participate! Mission Zero is really simple and requires no prior coding knowledge, neither from you, nor from the young people in your team. Or your team could take part in Mission Space Lab — you’ve still got 10 days to send us your team’s experiment idea! And then, who knows, maybe your team will get to meet Tim Peake one day… or even become astronauts themselves!

Tim Peake observes two boys writing code that will run in space as part of the European Astro Pi Challenge

The post Tim Peake and Astro Pi winners meet at Rooke Award ceremony appeared first on Raspberry Pi.

DIY AD9833 signal generator

via Dangerous Prototypes

Daumemo has been working on a DIY signal generator based on an AD9833 IC:

In this post I am going to continue with the DIY signal generator based on the AD9833 IC where I have left in the previous part. Earlier, I have talked how I had built my first analog signal generator’s stage – variable gain amplification circuit. Usually, a generator needs to have an ability to change not only the signal’s amplitude, but also its offset. So, today I will walk you through a circuit which adds an offset to the DIY generator’s output signal.

More details on his blog. See part 1 of this series for the analog signal generator’s stage.