Detecting motion with an Arduino and two wires

via Arduino Blog

Connor Nishijima has come with a unique way to detect motion using an Arduino Uno. The active media developer is polling an ADC pin with a pair of wires twisted tightly together — one plugged into A3, another plugged into ground — and generating readings whenever a large living object (like his two cats) is nearby.

“The closest I have ever come to explaining this is capacitive coupling. So what it is is the antenna is leaching a little bit of electricity off you, and you are leaching a little bit of electricity from the antenna. The differential that happens when you move around is what the Arduino is picking up.”

He’s calling this effect “Capacitive Turbulence,” and so far he’s only got it work on the Arduino, no luck using other boards with ADCs. You can watch him explain this magical phenomenon in more detail below!

Detecting motion with an Arduino and two wires

via Arduino Blog

Connor Nishijima has come with a unique way to detect motion using an Arduino Uno. The active media developer is polling an ADC pin with a pair of wires twisted tightly together — one plugged into A3, another plugged into ground — and generating readings whenever a large living object (like his two cats) is nearby.

“The closest I have ever come to explaining this is capacitive coupling. So what it is is the antenna is leaching a little bit of electricity off you, and you are leaching a little bit of electricity from the antenna. The differential that happens when you move around is what the Arduino is picking up.”

He’s calling this effect “Capacitive Turbulence,” and so far he’s only got it work on the Arduino, no luck using other boards with ADCs. You can watch him explain this magical phenomenon in more detail below!

#FreePCB via Twitter to 2 random RTs

via Dangerous Prototypes

BP-600x373

Every Tuesday we give away two coupons for the free PCB drawer via Twitter. This post was announced on Twitter, and in 24 hours we’ll send coupon codes to two random retweeters. Don’t forget there’s free PCBs three times a every week:

  • Hate Twitter and Facebook? Free PCB Sunday is the classic PCB giveaway. Catch it every Sunday, right here on the blog
  • Tweet-a-PCB Tuesday. Follow us and get boards in 144 characters or less
  • Facebook PCB Friday. Free PCBs will be your friend for the weekend

Some stuff:

  • Yes, we’ll mail it anywhere in the world!
  • Check out how we mail PCBs worldwide video.
  • We’ll contact you via Twitter with a coupon code for the PCB drawer.
  • Limit one PCB per address per month please.
  • Like everything else on this site, PCBs are offered without warranty.

We try to stagger free PCB posts so every time zone has a chance to participate, but the best way to see it first is to subscribe to the RSS feed, follow us on Twitter, or like us on Facebook.

Pen FM transmitter bug

via Dangerous Prototypes

pen-fm-transmitter-bug

A pen FM transmitter bug project from Electronics-DIY:

Pen FM Transmitter bug projects have been very popular. The idea of being able to hide a transmitter in a pen is very appealing. In an effort to reduce the size of this design, we have used surface-mount components. Firstly, the thought of using the coil in the tank circuit for transmitting RF was a little far fetched, but we used it as an example for those who were interested in experimenting with our circuits. Now we have gone back to a conventional antenna, the whip. The whip or straight-line antenna can be coiled, wound longitudinally or folded. The way it is wound makes a big difference to its effectiveness, but when you are limited in space, you have to accept these limitations. Even though we have used this antenna set up in our previous pen bugs we have considerably improved the circuit to the point were it has low battery consumption, but high RF output. The size of this design has been reduced considerably by using surface-mount components.

T³: Making a Dark Node out of the Edison

via SparkFun Electronics Blog Posts

This weekend was Maker Faire Bay Area, and one demo I brought was not very visual (at least not at first glance). I turned an Intel® Edison into a WiFi access point and served a simple arcade game to people’s smartphones.

Sparcade server

I placed a sign next to the Edison that provided instructions on how to connect to the Edison’s access point and request the website. People were presented with a Phaser browser game based on Tempest.

Playing Vortex

When the player eventually died, their score was sent back to the Edison server, which compared it to the current list of top 10 high scores. If the player ranked in the top 10, the server sent a request back to the client, and the game requested the player’s initials. The Edison maintained a list of the top scores and displayed them on a connected character LCD.

A few people tried it, and it started some conversations with old-school Tempest fans. I also brought it to the BringAHack gathering Sunday night. I bought a drink for the player with the highest score after an hour. This proved to be a great way to force me to socialize.

If you are curious about making your own dark node game server, check out the tutorial below:

New!

Sparcade: Edison as a Web Server for Browser Games

May 19, 2016

Turn the Intel® Edison into an access point that serves a simple browser-based game. High scores from the game are displayed on a character LCD.

A playable version of the game (without the top 10 score list) can be found here: http://shawnhymel.github.io/Vortex/.

I’m looking for ideas on how to take this further. For example, broadcast a puzzle game from within a locked chest that people would have to solve to open the chest. What are your thoughts?

comments | comment feed

Astro Pi Coding Challenges: a message from Tim Peake

via Raspberry Pi

Back in February, we announced an extension to the Astro Pi mission in the form of two coding challenges. The first required you to write Python Sense HAT code to turn Ed and Izzy (the Astro Pi computers) into an MP3 player, so that Tim Peake could plug in his headphones and listen to his music. The second required you to code Sonic Pi music for Tim to listen to via the MP3 player.

Astro_Pi_Logo_WEB-300px

We announced the winners in early April. Since then, we’ve been checking your code on flight-equivalent Astro Pi units and going through the official software delivery and deployment process with the European Space Agency (ESA).

Crew time is heavily regulated on the ISS. However, because no science or experimentation output is required for this, they allowed us to upload it as a crew care package for Tim! We’re very grateful to the UK Space Agency and ESA for letting us extend the Astro Pi project in this way to engage more kids.

The code was uploaded and Tim deployed it onto Ed on May 15. He then recorded this and sent it to us:

Tim Peake with the Astro Pi MP3 player

British ESA astronaut Tim Peake’s message to the students who took part in the 2016 Astro Pi coding challenges to hack his Astro Pi mini-computer, on the International Space Station, into an MP3 player. The music heard is called Run to the Stars composed by one of the teams who took part.

In total, there were four winning MP3 players and four winning Sonic Pi tunes; the audio from the Sonic Pi entries was converted into MP3 format, so that it could be played by the MP3 players. The music heard is called Run to the Stars, composed with Sonic Pi by Iris and Joseph Mitchell, who won the 11 years and under age group.

Tim tested all four MP3 players, listened to all four Sonic Pi tunes, and then went on to load more tunes from his own Spacerocks collection onto the Astro Pi!

Tim said in an email:

As a side note, I’ve also loaded it with some of my Spacerocks music – it works just great. I was dubious about the tilt mechanism working well in microgravity, using the accelerometers to change tracks, but it works brilliantly. I tried inputting motion in other axes to test the stability and it was rock solid – it only worked with the correct motion. Well done to that group!!

“That group” was Lowena Hull from Portsmouth High School, whose MP3 player could change tracks by quickly twisting the Astro Pi to the left or right. Good coding, Lowena!

Thanks again to everyone who took part, to our special judges OMD and Ilan Eshkeri, and especially to Tim Peake, who did this during his time off on a Sunday afternoon last weekend.

The post Astro Pi Coding Challenges: a message from Tim Peake appeared first on Raspberry Pi.