Bringing a book to life with Raspberry Pi | Hello World #9

via Raspberry Pi

Sian Wheatcroft created an interactive story display to enable children to explore her picture book This Bear, That Bear. She explains the project, and her current work in teaching, in the newest issue of Hello World magazine, available now.

The task of promoting my first children’s picture book, This Bear, That Bear, was a daunting one. At the time, I wasn’t a teacher and the thought of standing in front of assembly halls and classrooms sounded terrifying. As well as reading the book to the children, I wanted to make my events interactive using physical computing, showing a creative side to coding and enabling a story to come to life in a different way than what the children would typically see, i.e. animated retellings.

The plan

Coming from a tech-loving family, I naturally gravitated towards the Raspberry Pi, and found out about Bare Conductive and their PiCap. I first envisaged using their conductive paint on the canvas, enabling users to touch the paint to interact with the piece. It would be some sort of scene from the book, bringing some of the characters to life. I soon scrapped that idea, as I discovered that simply using copper tape on the back of the canvas was conductive enough, which also allowed me to add colour to the piece.

I enlisted the help of my two sons (two and five at the time) — they gladly supplied their voices to some of the bears and, my personal favourite on the canvas, the ghost. The final design features characters from the book — when children touch certain areas of the canvas, they hear the voices of the characters.

The back of the canvas, covered in copper tape

Getting the project up and running went pretty smoothly. I do regret making the piece so large, though, as it proved difficult to transport across the country, especially on the busy London Underground!

Interactivity and props

The project added a whole other layer to the events I was taking part in. In schools, I would read the book and have props for the children to wear, allowing them to act out the book as I read aloud. The canvas then added further interaction, and it surprised me how excited the children were about it. They were also really curious and wanted to know how it worked. I enjoyed showing them the back of the canvas with all its copper tape and crocodile clips. They were amazed by the fact it was all run on the Raspberry Pi — such a tiny computer!

The front of the interactive canvas

Fast-forward a few years, and I now find myself in the classroom full-time as a newly qualified teacher. The canvas has recently moved out of the classroom cupboard into my newly developed makerspace, in the hope of a future project being born.

I teach in Year 3, so coding in Python or using the command line on Raspbian may be a little beyond my students. However, I have a keen interest in project-based learning and am hoping to incorporate a host of cross-curricular activities with my students involving the canvas.

I hope to instil a love for digital making in my students and, in turn, show senior leaders what can be done with such equipment and projects.

A literacy project

This work really lends itself to a literacy project that other educators could try. Perhaps you’re reading a picture book or a more text-based piece: why not get the students to design the canvas using characters from the story? The project would also work equally well with foundation subjects like History or Science. Children could gather information onto the canvas, explaining how something works or how something happened. The age of the children would influence the level of involvement they had in the rest of the project’s creation. The back end could be pre-made — older children could help with the copper tape and wiring, while younger children could stop at the design process.

Part of the project is getting the children to create sounds to go with their design, enabling deeper thinking about a story or topic.

It’s about a collaborative process with the teacher and students, followed by the sharing of their creation with the broader school community.

Get Hello World magazine issue 9 for free

The brand-new issue of Hello World is available right now as a free PDF download from the Hello World website.

UK-based educators can also subscribe to receive Hello World as printed magazine FOR FREE, direct to their door. And those outside the UK, educator or not, can subscribe to receive free digital issues of Hello World in their inbox on the day of their release.

Head to helloworld.raspberrypi.org to sign up today!

The post Bringing a book to life with Raspberry Pi | Hello World #9 appeared first on Raspberry Pi.

This machine bends brass wire with precision

via Arduino Blog

Jiri Praus enjoys using brass wire for his freeform sculptures, but isn’t a fan of making the same bends over again. To solve this problem, he designed a CNC machine to handle that task for him.

His device features a series of rollers to straighten out the wire, with a servo-driven puller that utilizes a roller normally used with a welding machine. A second servo then precisely bends the wire into shape, creating squares, hexagons and even springs under the control of an Arduino/CNC shield. 

You can see the project in action in the videos below, and if you want to build your own, the STL files for this mostly 3D-printed setup are up on GitHub.

Upcycle an old coffee pot into an IoT ramen maker

via Arduino Blog

Ramen noodles can be a quick snack or meal, but per this IoT ramen maker by Clem Mayer, you don’t even have to run to the microwave to prepare them. 

His project used a vintage electric filter coffee machine to heat and dribble water into the waiting brick-o-food, then a stepper-driven pusher adds flavor powder. More seasoning can be dispensed via a servo-actuated syringe, and another stepper is used to stir everything.

The setup is controlled by a MKR WiFi 1010 board, giving Mayer the ability to start meals/mix in hot sauce from the convenience of his phone via a simple web app. Results are… edible-ish, but if you want to build your own, files and more info can be found here.

Saving biologists’ time with Raspberry Pi

via Raspberry Pi

In an effort to save themselves and fellow biologists hours of time each week, Team IoHeat are currently prototyping a device that allows solutions to be heated while they are still in cold storage.

The IoHeat team didn’t provide any photos with their project writeup, so here’s a picture of a bored biologist that I found online

Saving time in the lab

As they explain in their prototype write-up:

As scientists working with living organisms (from single cells to tissue samples), we are often required to return to work outside of normal hours to maintain our specimens. In many cases, the compounds and solutions we are using in our line of work are stored at 4°C and need to reach 37°C before they can be used. So far, in order to do this we need to return to our workplace early, incubate our solutions at 37°C for 1–2h, depending on the required volume, and then use them in processes that often take a few minutes. It is clear that there is a lot of room here to improve our efficiency.

Controlling temperatures with Raspberry Pi

These hours wasted on waiting for solutions to heat up could be better spent elsewhere, so the team is building a Raspberry Pi–powered device that will allow them to control the heating process remotely.

We are aiming to built a small incubator that we can store in a cold room/fridge, and that can be activated remotely to warm up to a defined temperature. This incubator will enable us to safely store our reagents at low temperature and warm them up remotely before we need to use them, saving an estimate of 12h per week per user.

This is a great project idea, and they’ve already prototyped it using a Raspberry Pi, heating element, and fan. Temperature and humidity sensors connected to the Raspberry Pi monitor conditions inside the incubator, and the prototype can be controlled via Telegram.

Find out more about the project on Hackster.

We’ve got more than one biologist on the Raspberry Pi staff, so we have a personal appreciation for the effort behind this project, and we look forward to seeing how IoHeat progresses in the future.

The post Saving biologists’ time with Raspberry Pi appeared first on Raspberry Pi.

App note: Consideration of self pollution reduction for electronic systems

via Dangerous Prototypes

an_on_AND9019

App note from ON Semiconductors on EMI self pollution. Link here (PDF)

This application note will address the problem of Electro Magnetic Interference (EMI) self pollution in which one part of an electrical systems such as cell phones and consumer electrical products emit radiation that interferes with the operation of other parts of the system.

App note: 1 kV SenseFET integrated power switch

via Dangerous Prototypes

an_on_AN4176

App note from ON Semiconductors on their FSL4110LR power switch for SMPS power supplies. Link here (PDF)

Some industrial equipment that are supplied from a threephase AC power source such as industrial drives and energy meters often need an auxiliary power supply stage that can provide a regulated low-power DC source for analog and digital circuitry.

This power supply stage requests special specifications such as;
– Wide AC input voltage: 45 VAC to 460 VAC
– Robust system against high line surge
– Protection against magnetic contact test
– Large output capacitance to keep long hold-up timeafter power-off