Geometric Nixie tube clock and environmental display

via Arduino Blog

Creators keep coming up with new clock designs, and while you might think that every new possibility has been exhausted, Christine Thompson has proved this assumption wrong once again with her “VFD Trilateral Clock.

This Arduino Uno-powered device employs a stepper motor to rotate a triangular prism shape with scales for hours and minutes on one side, temperature in Celsius and Fahrenheit on the other, and humidity and pressure on the third surface.

The geometric scale travels in 120-degree steps, causing each face to line up with a pair of IN-13 Nixie tubes on either side. These linear tubes are then used to indicate time and environmental conditions in a beautiful bell jar display, as seen at around 3:30 in the video below.

While waiting for the delivery of parts for another project I decided to push ahead with this project. At its heart is two IN-13M Nixie tubes. These tubes are designed to provide a linear scale between maximum and minimum points using an illuminated column. The project uses two of these IN-13M, three wire Nixie tubes to show, time (Hours and Minutes), temperature (Celsius and Fahrenheit), Humidity (percentage), and Pressure (millibars).

At this point I would like to thank Dr. Scott M. Baker for his great web site, which provided me with all the information I needed to get these Nixie tubes to work. In particular the Current Regulator as displayed and detailed on his web site.

The project uses a BME280 sensor to determine the temperature, pressure and humidity and RTC clock to monitor time. As the system needs to display six different values it was necessary to construct a rotating central display which showed these values against six scales. In order to achieve this an equilateral triangle of wood was fashioned, each side showing two sets of values. A stepper motor was mounted under the top platform and this motor rotates through 120 degrees in time for the next set of values to be displayed on the two Nixie tubes.

Vari-Sound dynamically manipulates sound waves

via Arduino Blog

Consider all the tools that modify how light is transmitted and received: lasers direct light in a tightly focused beam and telescopes let us focus on an area far away. While there are certainly ways to modify sound, these techniques are not nearly as developed as their light counterparts. 

With hopes of changing that, researchers from the University of Sussex and the University of Bristol have been working with metamaterials—normal materials like plastic, paper, wood or rubber with an internal structure designed to manipulate sound waves—to build acoustic lenses. 

The team demonstrated the first dynamic metamaterial device with the zoom objective of a varifocal for sound, as well as create a collimator capable of transmitting sound as a directional beam from a standard speaker.

The lenses are attached to the collimator, and can be used to direct sound from a speaker or two can be employed together to construct an adjustable focus system. Focal length is regulated by the distance between the two lenses, which is controlled by an Arduino Nano and a single stepper motor mounted to an adjustable rail.

You can learn more about Vari-Sound in this article or read the team’s entire paper here

PocketPi MK2

via Dangerous Prototypes

img_20190518_140600 A smaller thinner PocketPi from Facelesstech:

Thinner with a simpler design but packing the same feature as before. At its heart is a raspberry pi zero W with a 3.5″ screen 480×320. It has all the GPIO pins available what aren’t being used by the screen. Its powered by a 2500mAh battery and has one full sized usb port. Its controlled by a bluetooth keyboard with trackpad

More details on Facelesstech blog.

Check out the video after the break.

Build your own animatronic GLaDOS

via Raspberry Pi

It’s 11 years since Steam’s Orange Box came out, which is probably making you feel really elderly. Portal was the highlight of the game bundle for me — cue giant argument in the comments — and it still holds up brilliantly. It’s even in the Museum of Modern Art’s collection; there’s nothing that quite says you’re part of the establishment like being in a museum. Cough.

I bought an inflatable Portal turret to add to the decor in Raspberry Pi’s first office (I’m still not sure why; I just thought it was a good idea at the time, like the real-life Minecraft sword). Objects and sounds from the game have embedded themselves in pop culture; there’s a companion cube paperweight somewhere in my desk at home, and I bet you’ve encountered a cake that looks like this sometime in the last 11 years or so.

A lie

But turrets, cakes, and companion cubes pale into viral insignificance next to the game’s outstanding antagonist, GLaDOS, a psychopathic AI system who just happens to be my favourite video game bad guy of all time. So I was extremely excited to see Element14’s DJ Harrigan make an animatronic GLaDOS, powered, of course, by a Raspberry Pi.

Animitronic GLaDOS Head with Raspberry Pi

The Portal franchise is one of the most engaging puzzle games of the last decade and beyond the mind-bending physics, is also known for its charming A.I. antagonist: G.L.a.D.O.S. Join DJ on his journey to build yet more robotic characters from pop culture as he “brings her to life” with a Raspberry Pi and sure dooms us all.

Want to make your own? You’ll find everything you need here. I’ve been trying awfully hard not to end this post on a total cliche, but I’m failing hard: this was a triumph.

The post Build your own animatronic GLaDOS appeared first on Raspberry Pi.

App note: Eye safety for proximity sensing using infrared light-emitting diodes

via Dangerous Prototypes

an_renesas_AN1737

A guide to human eye safety for designers of consumer products, app note from Renesas. Link here (PDF)

Active Proximity Sensing for Consumer products requires the use of a light-emitting component to illuminate the target object to be detected at some distance from the sensor. Typically, product designers do not want the illumination to interfere with the other functions of the product, or to distract the user during normal use. Therefore, Infrared Light-emitting Diodes (IR-LEDs) are used as the light-emitting components for proximity sensing. To further reduce the user awareness of the proximity function, the IR-LED and the proximity sensor are located under heavily tinted – but, infrared-transmitting – glass. While remaining unaware of any illuminating light source, the consumer indeed is exposed to low-levels of infrared radiation. All consumer products that emit light radiation – whether visible, ultraviolet, or infrared – must adhere to international standards that specify exposure limits for human eye safety.