Tag Archives: app notes

App note: Cable compensation of a primary-side-regulation power supply

via Dangerous Prototypes

Another tech note from Richtek on power supply regulation with cable compensation. Link here

Cable compensation has been used to compensate the voltage drop due to cable impedance for providing a regulated charging voltage in battery charger applications. This application note uses a novel cable compensation method, which called cable minus compensation, as an example to describe the concept and design criteria for the cable compensation of a PSR flyback converter. The analytic results are also verified by the simulation results.

App note: Analysis of buck converter efficiency

via Dangerous Prototypes

Tech note from Richtek on buck converter profiling. Link here

The synchronous buck circuit is wildly used to provide non-isolated power for low voltage and high current supply to system chip. To realize the power loss of synchronous buck converter and to improve efficiency is important for power designer. The application note introduces the analysis of buck converter efficiency and realizes major power component loss in synchronous buck converter.

App note: Grounding techniques

via Dangerous Prototypes

Renesas detailed app note about grounds. Link here (PDF)

Ground is taken for granted. We stand on it, we dig into it, we make mud pies out of it. The ground isn’t supposed to move. We don’t have to think about it; it just is. When it comes to grounding a circuit, we assume that our connections are as solid as the turf below our scuffed shoes. Many times, this is a reasonable assumption-but not always. How do we know when there is a problem with a circuit’s ground? What practices will ensure we construct a good ground?

No longer to be taken for granted, we define ground in ideal and real situations. Ground configurations and printed circuit board (PCB) examples will be presented.

App note: DC-to-DC design guide

via Dangerous Prototypes

DC-DC converter design guide from Vishay. Link here (PDF)

Manufacturers of electronic systems that require power conversion are faced with the need for higher-density dc-to-dc converters that perform more efficiently, within a smaller footprint, and at lower cost despite increasing output loads. To meet these demands, Siliconix has combined advanced TrenchFET and PWM-optimized process technologies, along with innovative new packages, to provide:
– lowest on-resistance for minimum power dissipation
– lowest gate charge for minimum switching losses
– dV/dt shoot-through immunity
– improved thermal management

App note: Torque recommendations for TO-220 devices

via Dangerous Prototypes

App note from Vishay on the impact of torque on thermal resistance of TO-220 devices. Link here (PDF)

When the TO-220 was first introduced, most applications required something less than the full power handling capabilities of this package. Hence, the TO-220 is almost taken for granted in terms of its excellent power handling capacity and ruggedness. Today, however, advances in semiconductor technologies are bringing application demands closer to the TO-220’s capabilities, so an understanding of these is more relevant than ever.

App note: What are Y-Capacitors?

via Dangerous Prototypes

Vicor’s app note about the basics of Y-Capacitors and their uses. Link here

When electronic equipment is connected to the AC mains, it has the potential to generate common-mode electrical noise. If this is allowed to flow back on to the mains supply line, it can disturb other equipment also connected to the same line.