Tag Archives: app notes

App note: Current limits in electronic fuses using direct and Kelvin R limit connections

via Dangerous Prototypes

an_on_AND9441-D

App note from ON Semiconductor about eFuse or Electronic fuse. Link here (PDF)

The primary function of an Electronic Fuse, or eFuse, is to limit current, the same function provided by any fuse or positive temperature coefficient device (PTC). An eFuse, however, provides this function with much more versatility than either of these devices. An eFuse, unlike a standard fuse, need not be replaced after it functions and eFuses also respond more rapidly than a either a fuse or PTC. eFuses can also limit current in situations in which a traditional fuses and PTCs will not work. This is especially true when voltage is first provided to a circuit, such as during a hot plug operation, when inrush current can be extremely high. This application note will explain the basic operation of an eFuse’s current limit function and explain important eFuse concepts such as Overload and Short Circuit currents, and Kelvin versus Direct connection of the eFuse’s current sense resistor.

App note: The four benefits brought by using NCP12600

via Dangerous Prototypes

an_on_AND9682-D

App note discussing extended features of NCP12600, NCP12600 is a multi-mode controller for offline power supplies by ON Semiconductor. Link here (PDF)

Beside the novel multi−mode structure it embarks, the NCP12600 packs a lot of features such as an efficient short−circuit protection architecture, a start−up sequence with a slow switching frequency ramp−up, a fast reset when latched and an auto−recovery scheme when line cycle dropout occurs in latched versions. Let’s discover these novelties in the present application note.

App note: LEDs – The future of horticultural lighting

via Dangerous Prototypes

an_wurth_ANO002a

LEDs used in a controlled environment greenhouse farms, an app note from Würth Elektronik. Link here (PDF)

Greenhouse farms may not be a new technology but with an every growing world population and the move towards sustainability, intensive yet highly efficient and standardized food production will increasingly become the norm in future years opening a potentially huge new agricultural sector that incorporates the latest technologies from the bioscience and engineering fields. But how can researchers and personnel from these separate fields understand the mutually dependent requirements of indoor greenhouses? Photosynthesis is the process that converts water and carbon dioxide into complex carbohydrates (i.e. sugars) and oxygen using energy from light. However, although the energy radiated by the sun that reaches the earth’s surface consists of the entire spectrum of visible light (and more), plants only utilize specific frequencies of light for photosynthesis. These frequencies are related to the absorption characteristics of different pigments that are present within organelles called chloroplasts that are responsible for different functions of photosynthesis.

Light emitting diodes are solid-state, light generating components that, have become and will continue to be one of the greatest drivers in the expansion of internal greenhouses due to their advantages over incandescent bulbs, fluorescent bulbs, high-pressure sodium lamps and mercury lamps. Their main advantage stems from their ability to generate specific wavelengths of light. To meet the requirements for Horticultural LED’s for Indoor-farming, Würth Elektronik offers the WL-SMDC SMD Mono-color Ceramic LED Waterclear series of LEDs. The WL-SMDC range has been expanded to include wavelengths of 450 nm (Deep Blue), 660 nm (Hyper Red) and 730 nm (Far Red), which have been selected to match the absorption spectra of photosynthetic pigments. In addition to the existing products in the range, a diverse range of combinations is possible that can be catered to the target cultivar.

App note: The behavior of electro-magnetic radiation of power inductors in power management

via Dangerous Prototypes

an_wurth_ANP047a

Application note form Würth Elektronik about EM radiation radiated from inductors in DC-DC converters. Link here (PDF)

This Application Note focuses on the Electro-Magnetic (EM) radiation behavior of power inductor(s) in DC-DC converters, which is dependent on several parameters such as ripple current, switching frequency, rise & fall time of a switching device, the core material and its permeability and suggests several design tips to mitigate these EMI effects.

App note: Understanding infrared diode power ratings

via Dangerous Prototypes

an_ttelectronics_ir_specs

App note from TT Electronics about infrared diode specs, how they vary from different manufacturers, and help clear things about infrared definition of parameters. Link here (PDF)

Infrared emitting diode power measurement is dependent upon a number of variables which must be precisely defined in order for design engineers to utilize data sheet information. Manufacturers differ not only in the techniques used in measuring power, but also in their interpretations of the definitions of the parameters which are measured. This application bulletin is intended to clarify this misunderstanding, especially for GaAs and GaAlAs solution grown epitaxial devices.

App note: Linear and rotary encoders are evolving to meet demands

via Dangerous Prototypes

an_ttelectronics_rotary_encoders

Application notes from TT Electronics on optical encoders versatile sensing. Link here (PDF)

Linear and rotary encoders have come in a wide variety of design styles over the years, the most common being rotary switches, potentiometers, capacitive, magnetic, and optical types. The optical encoder has become the most popular of these encoding methods due to its long life, simplicity of construction, versatility, high accuracy and high resolution. This application bulletin will briefly define an optical encoder, and bring the designer up to date on encoder terminology, design techniques and limitations.