Tag Archives: arduino

Motorgan is an electromagnetic organ

via Arduino Blog

What do you get when you combine three small motors with a guitar pickup and a touch keypad? That would be the Motorgan by Moscow-based media artist Dmitry Morozov (aka ::vtol::). The result is a unique Arduino Mega-controlled instrument that looks and sounds like he somehow combined a V8 engine with a pipe organ.

The electromagnetic/electromechanical organ uses two differently sized PC cooling fans, as well as a gear motor to produce various sounds. A separate keypad is used for each motor, and each of the 24 keys can be tuned with a potentiometer, which reportedly allows one to “make any kind of music.”

The speed of each motor is controlled by voltage changes via touch keyboard with 24 keys. Keyboard is split into three parts (registers) for each motor, so it’s possible to play chords/polyphonic lines by taking one note from each register. Electromagnetic fields produced by motors are picked up with a single coil guitar pickup.

As you might suspect, it’s not exactly an easy instrument to play, but the results are certainly stunning, or perhaps you might even say “shocking.” Be sure to check out ::vtol::’s latest project in the video below!

Over-engineered, Arduino-powered closet lights

via Arduino Blog

If you’re faced with a closet that doesn’t have any lights inside, you simply could go and find puck lights at most retail stores. But, if you’re Dillon Nichols, you buy a set of lights, and enhance them with a wired power supply and automatic Arduino control.

To accomplish this, Nichols decoded the infrared remote control signal to his puck lights using an Arduino Leonardo, then set up things up to sense the door’s opening via a physical switch and signal the lights accordingly. Now when he opens the closet, lights automatically shine down and fade out when it’s closed.

Nichols also added a timer, so that they turn off after 10 minutes automatically if he forgets to shut the door. Looking for an over-engineered, non-permanent solution for yourself? You can check out his detailed write-up here and find the code for his build on GitHub.

Project Aslan is a 3D-printed robotic sign language translator

via Arduino Blog

With the lack of people capable of turning written or spoken words into sign language in Belgium, University of Antwerp masters students Guy Fierens, Stijn Huys, and Jasper Slaets have decided to do something about it. They built a robot known as Aslan, or Antwerp’s Sign Language Actuating Node, that can translate text into finger-spelled letters and numbers.

Project Aslan–now in the form of a single robotic arm and hand–is made from 25 3D-printed parts and uses an Arduino Due, 16 servos, and three motor controllers. Because of its 3D-printed nature and the availability of other components used, the low-cost design will be able to be produced locally.

The robot works by receiving information from a local network, and checking for updated sign languages from all over the world. Users connected to the network can send messages, which then activate the hand, elbow, and finger joints to process the messages.

Although it is one arm now, work will continue with future masters students, focusing on expanding to a two-arm design, implementing a face, and even integrating a webcam into the system. For more info, you can visit the project’s website here as well as its write-up on 3D Hubs.

The GuitarBot will strum you a song

via Arduino Blog

While many Makers have musical skill, others attempt to compensate for their lack of it by producing automatic instruments that play themselves. One such attempt started in 2015 as a collaborative project between three University of Delaware professors as part of an initiative known as “Artgineering.” This was meant to “create a public spectacle… to demonstrate that engineering and art can work together harmoniously.”

Although many would consider engineering to be an art in itself, if you’d like to create your own robotic band, this Instructables write-up for the GuitarBot is a great place to start.

The guitar-playing robot is comprised of three major components: the brains, a strummer, and a chord mechanism. An Arduino Mega, a specially-ordered PCB and several shields are used for control, and a series of solenoids press down frets as needed. Finally, strumming is handled by a pick that is pulled by a DC motor and belt assembly, all of which is held up by an aluminum frame.

Levitate liquids and other tiny objects with this DIY device

via Arduino Blog

If you’ve ever wished you could levitate tiny drops of liquid, small solids, or insects in mid-air, new research has you covered. That’s because Asier Marzo, Adrian Barnes, and Bruce W. Drinkwater have developed a 3D-printed, Arduino Nano-controlled acoustic levitator.

Their device uses two arrays of 36 sonic transducers in a concave pattern, which face each other in order to suspend objects like Styrofoam, water, coffee and paper in between. Several items can even be trapped at the same time, and liquid is inserted into the “levitation zone” via a syringe.

The principle is similar to the vibration you feel when next to a large speaker, but in this case, the homemade levitator employs ultrasonic waves to push particles without causing any damage to humans.

Acoustic levitation has been explored in hundreds of studies for applications in pharmaceuticals, biology or biomaterials. It holds the promise of supporting innovative and ground-breaking processes. However, historically levitators have been restricted to a small number of research labs because they needed to be custom-made, carefully tuned and required high-voltage. Now, not only scientists but also students can build their own levitator at home or school to experiment and try new applications of acoustic levitation.

If you’d like to make your own, be sure to check out Marzo’s Instructables post or the team’s full paper on the experiment here.

Maker creates his own coilgun using an Arduino Nano

via Arduino Blog

If you suppose that electromagnetically-propelled projectiles are strictly the purview of well-funded government research labs, think again! Using two sets of coils wrapped around custom 3D-printed base structures and an Arduino Nano for control, YouTuber “Gyro” created his own coilgun capable of propelling steel fast enough to dent a piece of wood.

When fired, a photodiode at the end of each electromagnet coil sends a signal to the Arduino. This, in turn, shuts off the coil, allowing it freely escape the barrel.

As noted in his Instructables write-up, the gun is constructed without large capacitors, which can be expensive and dangerous. Instead, two LiPo battery packs are combined to produce around 22 volts, though this and the number of coils used, could be increased to produce a more powerful device!