Tag Archives: arduino

Arduino simulator puts you in the driver’s seat of a toy car

via Arduino Blog

As part of their final project at EDN – Navàs, robotics students Rafart Jordi and Marc Thomas recently built an impressive Arduino simulator that captures video from a camera-equipped RC vehicle and displays it on a TV screen, making it feel as though you’re in the driver’s seat of a shrunken-down car.

The simulator is powered by an Arduino Uno along with an IBT-2 H-Bridge to control the 24V motors, and wirelessly communicates with the modified toy car via an XBee module.

You have to see it in action below!

LDMOS amplifiers

via Dangerous Prototypes

pho20160622_172847-600

Pete (N6QW) writes:

This project encompasses proving an Arduino Control of a hi Power Linear Amplifier. It is a new departure for N6QW as it has extensive I/O requirements which required moving to the Mega 2560 a Arduino variant that has 56 Digital I/O and 16 Analog Inputs. The on board memory is 256K
The current configuration uses a 3×4 Keypad as the main control element.
Key 1 = Power On
Key 2 = Power Off
Key 3 = Amp Bypass [In this mode the LPF’s are disconnected and the amp power is off it requires RESTART and LPF Selection the TR Relay is disconnected so No RF into the amp on Bypass.LED16 Controls whether the amp is bypassed BUT LED 17 and LED 18 control the actual sequencing of the connection of the amp to the antenna system and the transceiver. WE are trying to avoid “hot switching”. Thus the amp is connected to the antenna first and then the transceiver is connected to the amp. This is done by a small delay on the connection of the amp to the input side. Problem solved!]

More info at N6QW Homebrew Radio blog.

This funny robot pets your dog’s head and feeds them a treat

via Arduino Blog

While this recent project may look like something straight out of Simone Giertz’s notebook, it’s actually the brainchild of James Cochrane. The engineer, who admittedly loves building all sorts of crazy machines, has developed an apparatus he calls the IoT Robot People/Pet Affectionator.

As its name would suggest, the Affectionator is an Arduino Nano-driven device that automatically gives his dog T-Bone a pat on the head along with a spoon-fed treat at the touch of an arcade button. That’s not all, though. It even allows the pup to reciprocate by pressing his own button and sending over a token of his appreciation on a fork–which in Cochrane’s case is a gummy worm.

Aside from the Arduino, the Affectionator is equipped with two H-Bridge motor drivers, two geared Pittman motors, and two geared hobby motors.

These days people are more connected with each other, however we are experiencing fewer physical interactions. This device will allow you to provide affection either locally or remotely to your pet without any physical contact. If your pet decides you are also worthy of their affection they can also reciprocate with a pat on the head and a tasty treat.

One day while giving my dog T-Bone a scratch behind the ears I came up with this silly idea. A robot which gives you a pet on the head and feeds you a treat. With the IoT, you can also build two of these and network them across the Internet.

Intrigued? Watch the hilarious idea in action below!

Cosmic Bitcasting is a wearable radiation detector

via Arduino Blog

1_img3021-11low

Cosmic Bitcasting is a digital art and science project emerging from the idea of connecting the human body with the cosmos by creating a wearable device with embedded light, sound and vibration that will provide sensory information on the invisible cosmic radiation that surrounds us. This open-source project actually works by detecting secondary muons generated by cosmic rays hitting the Earth’s atmosphere that pass through the body.

Artist Afroditi Psarra and experimental physicist Cécile Lapoire worked together to develop a prototype of the wearable cosmic ray detector during a one-month residency at Etopia in Zaragoza, and is currently on display at the Etopia-Center for Art and Technology in Zaragoza as part of the exhibition REVERBERADAS.

img3553

Cosmic Bitcasting is comprised of an Arduino Lilypad, High Flex 3981 7×1 fach Kupfer blank conductive thread from Karl Grimm, Pure Copper Polyester Taffeta Fabric by Less EMF, white SMD LEDs, a coin cell vibration motor, and an IRL3103 MOSFET with a 100 Ohm resistor to drive the motor.

Intrigued? Take a look at the video below and read the diary of the residency to learn more!