Tag Archives: computing education

Spotlight on primary computing education in our 2023 seminar series

via Raspberry Pi

We are excited to announce our next free online seminars, running monthly from January 2023 and focusing on primary school (K–5) teaching and learning of computing.

Two children code on laptops while an adult supports them.

Our seminars, having covered various topics in computing education over the last three years, will now offer you a close look at current questions and research in primary computing education. Through this series we want to connect research and teaching practice, and further primary computing education across the globe.

Are these seminars for me?

Our upcoming seminars are for everyone interested in computing education, not just for primary school teachers — you are all cordially invited to join us. Previous seminars have been attended by a valuable mix of teachers, volunteers, tech industry professionals, and researchers, all keen to explore how computing education research can be put into practice.

Learner using Scratch on a laptop.

Whether you teach in a classroom, or support learners in a coding club, you will find out how our youngest learners develop their computing knowledge. You’ll also explore with us what this means for your learning context in practical terms.

What you can expect from the online seminars

Each seminar starts with a presenter explaining, in easy-to-understand terms, some recent research they have done. The presentation is followed by a discussion in smaller groups. We then regroup for a Q&A session with the presenter.

Attendees of our previous seminars have said:

“The seminar will be useful in my practice when our coding club starts.”

“I love this initiative, your choice of speakers has been fantastic. You are creating a very valuable CPD resource for Computer Science teachers and educators all over the world. Thank you. 🙏”

“Just wanted to say a huge thank you for organising this. It was brilliant to hear the presentation but also the input from other educators in the breakout room. I currently teach in a department of one, which can be quite lonely, so to join other educators was brilliant and a real encouragement.” 

Learn from specialists to benefit your own learners

Computer science has been taught in universities for many years, and only more recently has the subject been introduced in schools. That means there isn’t a lot of research about computing education for school-aged learners yet, and even less research about how young children of primary school age learn about computing. 

Young learners at computers in a classroom.

That’s why we are excited to invite you to learn with us as we hear from international primary computing research teams who share their knowledge in our online seminars:

  • Tuesday 10 January 2023: Kicking off our series are Dr Katie Rich and Carla Strickland from Chicago with a seminar on how they developed new instructional materials for teaching variables in primary school. They will specifically focus on how they combined research with classroom realities, and share experiences of using their new materials in class. 
  • Tuesday 7 February 2023: Dr Jean Salac from the University of Washington is particularly interested in identifying and addressing inequities in the computing classroom, and will speak about a new learning strategy that has been found to improve students’ understanding of computing concepts and to increase equal access to computing.
  • Tuesday 7 March 2023: Our own Dr Bobby Whyte from the Raspberry Pi Foundation will share practical examples of how primary computing can be integrated into literacy education. He will specifically look at storytelling elements within computing education and discuss the benefits of combining competency areas.
  • May 2023: Information coming soon
  • Tuesday 6 June 2023: In a collaborative seminar, Aim Unahalekhaka from Tufts University in Massachusetts will first present her research into how children learn coding through ScratchJr. Participants are encouraged to bring a tablet or device with ScratchJr to then look at practical project evaluations and teaching strategies that can help young learners create purposefully.
  • Tuesday 12 September 2023: Joining us from the University of Passau in Germany, Luisa Greifenstein will speak about how to give children appropriate feedback that encourages positive attitudes towards computing education. In particular, she will be looking at the effects of different feedback strategies and present a new Scratch tool that offers automated feedback.
  • October 2023: Information coming soon
  • Tuesday 7 November 2023: We are delighted to be joined by Dr Aman Yadav from Michigan State University who will focus on computational thinking and its value for primary schooling. In his seminar, he will not only discuss the unique opportunities for computational thinking in primary school but also discuss findings from a recent project that focused on teachers’ perspectives. 

Sign up now to attend the seminars

All our seminars start at 17:00 UK time (18:00 CET / 12:00 noon ET / 9:00 PT) and take place in an online format. Sign up now to receive a calendar invitation and the link to join on the day of each seminar.

We look forward to seeing you soon, and to discussing with you how we can apply research results to better support all our learners.

The post Spotlight on primary computing education in our 2023 seminar series appeared first on Raspberry Pi.

Out now: Hello World’s special edition on Computing content

via Raspberry Pi

Hello World, our free magazine for computing and digital making educators, has just published its second special edition: The Big Book of Computing Content.

Cover of The Big Book of Computing Content.

A special edition on the content we teach in the Computing classroom

While Hello World‘s first special edition, The Big Book of Computing Pedagogy, focused on how we can teach Computing, this new book is about what we mean by Computing. It aims to demonstrate the breadth of knowledge and skills contained within this constantly evolving subject.

We have structured the new special edition around our taxonomy for formal Computing education, to which we map all our formal education resources. Originally we developed the taxonomy when we started work in the consortium setting up and delivering England’s National Centre for Computing Education, and specifically when we designed the 500 hours of classroom materials in the Teach Computing Curriculum.

The Raspberry Pi Foundation's computing content taxonomy, made of 11 strands: effective use of tools, safety and security, design and development, impact of technology, computing systems, networks, creating media, algorithms and data structures, programming, data and information, artificial intelligence.
The 11 strands of Computing content in our taxonomy.

Our Computing taxonomy comprises eleven strands and aims to categorise Computing conceptual knowledge and skills to both demonstrate the breadth of Computing as a discipline, and to provide a common language to describe the different areas of study and competencies.

The Big Book of Computing Content complements our first Hello World special edition and follows the same principle of introducing readers to up-to-date research, followed by our favourite stories from past Hello World issues by educators who put that content into practice. For each of the eleven strands in our taxonomy, we also present a table of learning outcomes, which provides examples of knowledge and skills that learners from ages 5 to 19 could develop at each stage of their formal computing education. 

Your thoughts on The Big Book of Computing Content

Hello World’s first special edition was very popular around the world, with educators setting up Big Book of Computing Pedagogy reading groups, leaders using the book to support pre-service teachers, and even of an upcoming translation into Thai.

We’ve already started to hear similar stories about The Big Book of Computing Content from Hello World readers, including CSEdResearch dedicating their Computer Science Education Discussion Group to all things Big Book of Computing Content in its first week of publication.

A tweet about Hello World's special edition The Big Book of Computing Content.

We’d love to hear from more educators about how you are using this new special edition, and how it complements your reading of the first Big Book.

You can also subscribe now to get each new Hello World — whether regular issue or special edition — straight to your digital inbox, for free! And if you’re based in the UK and do paid or voluntary work in education, you can subscribe for free print issues.

PS Have you listened to our Hello World podcast yet? Listen and subscribe wherever you get your podcasts.

The post Out now: Hello World’s special edition on Computing content appeared first on Raspberry Pi.

Non-formal learning activities: What do we know and how do we apply it to computing?

via Raspberry Pi

At the Raspberry Pi Foundation, we engage young people in learning about computing and creating with digital technologies. We do this not only by developing curricula for formal education and introducing tens of thousands of children around the world to coding at home, but also through supporting non-formal learning activities such as Code Club and CoderDojo.

A teacher watches two female learners code in Code Club session in the classroom.
Code Clubs are after-school coding clubs.

To find out what works in non-formal computing learning, we’ve conducted two research projects recently: a systematic literature review, and a set of two interventions that were applied and evaluated as part of our Gender Balance in Computing programme. In this blog, we outline these two research projects.

What is non-formal learning?

When you think of young people learning computing, do you think of schools, classrooms, and curricula? You’d be right that lots of computing education for young people takes place in classrooms as part of national curricula. However, a lot of learning can take place outside of formal schooling. When we talk about non-formal computing education, we mean structured or semi-structured learning environments such as clubs or community groups, often set up by volunteers. These may take place in a school, library, or community venue; but we’ve also heard of some of our communities running non-formal learning activities on buses, in fire stations, or at football grounds  — there really is no limit to where learning can happen.

A CoderDojo coding session for young people.
CoderDojos are community-based coding clubs and some take place in offices.

It’s harder to assess the impact and effectiveness of non-formal computing activities than formal computing education: we have to think outside of the traditional measures such as grades and formal exams or assessments. Instead, we estimate outcomes according to measures such as level of participant engagement, attendance, attrition rates, and changes in participants’ attitudes towards computing. We have previously also piloted non-formal assessments such as quizzes and found that these were well-received by adult facilitators and children alike. 

Project 1: Researching the impact of non-formal computing education

Earlier this year, we conducted a systematic literature review into computing education for K–12 learners in non-formal settings. We identified 88 relevant research studies, which we read, compared, and synthesised to provide an overview of what is already known about the effectiveness of non-formal computing activities and to identify opportunities for further research. 

Our analysis looked for common themes within existing studies and suggested some benefits that non-formal learning offers, including: 

  • Access to advanced and innovative topics
  • Awareness about computing careers 
  • The chance to personalise projects according to learner interests
  • The opportunity for learners to progress at their own pace
  • The chance for learners to develop a sense of community through peers and role models

We presented this research at an international computing education conference called ICER 2022, and you can read about it in our open-access paper in the ICER conference proceedings.

A tweet about a presentation about non-formal learning at the ICER 2022 conference.

Project 2: Making links between non-formal learning and formal computing study skills 

One particularly interesting characteristic of non-formal learning is that it tends to attract a broader range of learners than formal computing lessons. For example, a 2019 survey found that about 40% of the young people who attend Code Clubs were female. This is a high percentage compared with the proportion of girls among the learners choosing Computer Science GCSE in England, which is currently around 20%. We believe this points to an opportunity to capitalise on girls’ interest in learning activities outside of the classroom, and we hope to use non-formal activities to encourage more girls to take an interest in formal computer science education.

Two learners from Code Club at Hillside School.
Code Clubs are well-attended by girls.

As part of our Gender Balance in Computing research programme in England, we worked with Apps for Good and the Behavioual Insights Team (BIT) to run two interventions in school-based non-formal settings, for which we adapted non-formal resources and used behavioural science concepts to strengthen the links the resources make between non-formal learning and studying computing more formally. One intervention ran in secondary schools for learners aged 13–14 years old, who used an adapted Apps for Good course, and the other ran in primary school for learners aged 8–11 year olds, who took part in Code Clubs using adapted versions of our projects.

A tweet from a school participating in a research project related to non-formal learning.

The interventions were evaluated independently by a separate team from BIT, based on data from surveys completed by learners before and after the interventions, and interviews with teachers and learners. This data was analysed by the independent team to explore the impact the interventions had on learners’ attitudes towards computing and intention to study the subject in the future. 

What did we learn from these research projects? 

Our literature review concluded that future research in this area would benefit from experimenting with a variety of approaches to designing, and measuring the impact of, computing activities in a non-formal setting. For example, this could include comparing the short-term and long-term impact of specific interventions, aiming to cater for different types of participants, and offering different types of learning experiences.

A girl codes at a laptop while a woman looks on during a Code Club session.

In these two Gender Balance in Computing interventions, there was limited statistical evidence of an improvement in participants’ attitude towards computing or in their stated intention to study computer programming in the future. The independent evaluators recommended that the learning content that was created for the interventions could be adapted further to make the link between non-formal and formal learning even more salient. On the other hand, as is often the case with research, some interesting themes — ones that we weren’t looking for — emerged from the data, including: 

  • In the secondary school intervention, there was a small, positive change in girls’ attitudes toward computing when they saw that it was relevant to real-world problems
  • In the primary school intervention, some teachers also reported an increased confidence to pursue computing among girls who had used the adapted Code Club resources, and they highlighted the importance of positive female role models in computing

In both projects, the findings suggest that it is beneficial for learners to participate in non-formal learning activities that link to real-world situations, and that this could be particularly beneficial for girls to help them see computing as a subject that is relevant to their own interests and goals. Another common theme in both projects is that non-formal learning activities play an important role in showing what a “computer person” looks like and who belongs in computing. This suggests there’s a need for a diverse range of volunteers to run non-formal computing activities, and that we should make sure that non-formal learning resources include representations of a diverse range of learners.

Computing classroom with woman teacher and young students at laptops doing Scratch coding.

Undertaking these research projects has provided evidence that the work the Foundation does is on the right track and suggested opportunities to use these themes in our future non-formal work and resources. 

Find out more about our work on non-formal computing education

More information about research projects at the Raspberry Pi Foundation and our newly launched Raspberry Pi Computing Education Research Centre can be found on our research pages and on the Research Centre’s website.

The post Non-formal learning activities: What do we know and how do we apply it to computing? appeared first on Raspberry Pi.

Building a maths curriculum for a world shaped by computing

via Raspberry Pi

In the penultimate seminar in our series on cross-disciplinary computing, we were delighted to host Conrad Wolfram (European co-founder/CEO of Wolfram Research).

Conrad Wolfram.
Conrad Wolfram

Conrad has been an influential figure in the areas of AI, data science, and computation for over 30 years. The company he co-founded, Wolfram Research, develops computational technologies including the Wolfram programming language, which is used by the Mathematica and WolframAlpha programs. In the seminar, Conrad spoke about his work on developing a mathematics curriculum “for the AI age”.

In a computing classroom, a girl laughs at what she sees on the screen.

Computation is everywhere

In his talk, Conrad began by talking about the ubiquity of computation. He explained how computation (i.e. an operation that follows conditions to give a defined output) has transformed our everyday lives and led to the development of entire new sub-disciplines, such as computational medicine, computational marketing, and even computational agriculture. He then used the WolframAlpha tool to give several practical examples of applying high-level computation to problem-solving in different areas.

A line graph comparing the population of the UK with the number of sheep in New Zealand.
Yes, there are more people in the UK than sheep in New Zealand.

The power of computation for mathematics

Conrad then turned his attention to the main question of his talk: if computation has also changed real-world mathematics, how should school-based mathematics teaching respond? He suggested that, as computation has impacted all aspects of our daily lives, school subjects should be reformed to better prepare students for the careers of the future.

A diagram indicating that hand calculating takes up a lot of time in current maths classes.
Hand calculation methods are time-consuming.

His biggest criticism was the use of hand calculation methods in mathematics teaching. He proposed that a mathematics curriculum that “assumes computers exist” and uses computers (rather than humans) to compute answers would better support students to develop a deep understanding of mathematical concepts and principles. In other words, if students spent less time doing hand-calculation methods, they could devote more time to more complex problems.

What does computational problem-solving look like?

One interesting aspect of Conrad’s talk was how he modelled the process of solving problems using computation. In all of the example problems, he outlined that computational problem-solving follows the same four-step process:

  1. Define the question: Students think about the scope and details of the problem and define answerable questions to tackle.
  2. Abstract to computable form: Using the information provided, students translate the question into a precise abstract form, such as a diagram or algorithm, so that it can be solved by a computer-based agent.
  3. Computer answers: Using the power of computation, students solve the abstract question and resolve any issues during the computation process.
  4. Interpret results: Students reinterpret and recontextualise the abstract answer to derive useful results. If problems emerge, students refine or fix their work.

Depending on the problem, the process can be repeated multiple times until the desired solution is reached. Rather than being proposed as a static list of outcomes, the process was presented by Conrad as an iterative cycle than resembles an “ascending helix”:

A helix representing the iterative cycle of computational problem-solving.
The problem-solving ‘helix’ model.

A curriculum for a world with AI

In the later stages of his talk, Conrad talked about the development of a new computational curriculum to better define what a modern mathematics curriculum might look like. The platform that hosts the curriculum, named Computer-Based Math (or CBM), outlines the need to integrate computational thinking into mathematics in schools. For instance, one of the modules, How Fast Could I Cycle Stage 7 Of The An Post Rás?, asks students to develop a computational solution to a real-world problem. Following the four-step problem-solving process, students apply mathematical models, computational tools, and real-world data to generate a valid solution:

A module from Wolfram Research’s Computer-Based Maths curriculum.
Sample module from Computer-Based Math. Click to enlarge.

Some future challenges he remarked on included how a computer-based mathematics curriculum could be integrated with existing curricula or qualifications, at what ages computational mathematics should be taught, and what assessment, training, and hardware would be needed to support teachers to deliver such a curriculum. 

Conrad concluded the talk by arguing that the current need for computational literacy is similar to the need for mass literacy and pondering whether the UK could lead the push towards a new computational curriculum suitable for learners who grow up with AI technologies. This point provided food for thought during our discussion section, especially for teachers interested in embedding computation into their lessons, and for researchers thinking about the impact of AI in different fields. We’re grateful to Conrad for speaking about his work and mission — long may it continue!

You can catch up on Conrad’s talk with his slides and the talk’s recording:

More to explore

Conrad’s book, The Math(s) Fix: An Education Blueprint for the AI Age, gives more details on how he thinks data science, AI, and computation could be embedded into the modern maths curriculum.

You can also explore Wolfram Research’s Computer-Based Maths curriculum, which offers learning materials to help teachers embed computation in their maths lessons. 

Finally, try out Wolfram’s tools to solve everyday problems using computation. For example, you might ask WolframAlpha data-rich questions, which the tool converts from text input into a computable problem using natural language processing. (Two of my favourite example questions are: “How old was Leonardo when the Mona Lisa was painted?” and “What was the weather like when I was born?”)

Join our next seminar

In the final seminar of our series on cross-curricular computing, we welcome Dr Tracy Gardner and Rebecca Franks (Raspberry Pi Foundation) to present their ongoing work on computing education in non-formal settings. Sign up now to join us for this session on Tues 8 November:

We will shortly be announcing the theme of a brand-new series of research seminars starting in January 2023. The seminars will take place online on the first Tuesday of the month at 17:00–18:30 UK time.

The post Building a maths curriculum for a world shaped by computing appeared first on Raspberry Pi.

Girls’ sense of belonging in the Computing classroom: Study results

via Raspberry Pi

We’re sharing the fourth evaluation report on projects in our Gender Balance in Computing research programme today. This is a programme we’ve been running, with partner organisations, as part of the National Centre for Computing Education, funded by the Department for Education in England. The programme’s overall goal is to identify ways to encourage more young women to study Computer Science.

A girl in a university computing classroom.

Like the previous reports on our Storytelling, Pair Programming, and Peer Instruction projects, this new report was compiled by independent evaluators from the Behavioural Insights Team (BIT). It concerns a study conducted with learners aged 9 to 10 and examining two approaches aimed at improving girls’ sense of belonging in computing.

The importance of belonging in computing

A growing body of research suggests that girls’ interest and motivation is linked to the sense of belonging that they feel when experiencing and studying STEM subjects. When girls see themselves represented in computing by identifying role models, they are more likely to value the subject in their studies and future careers. Parents and wider family members also play an important role in amplifying the message that girls belong in computing through the way that they talk about the subject.

Two learners do physical computing in the primary school classroom.

The Belonging study was structured as two distinct but related interventions designed to improve girls’ sense of belonging, each following a different approach. WISE and a team at BIT (separate to the team evaluating the study) were responsible for the design, delivery, and implementation of the two interventions, while we provided overall programme management and recruited schools.

Interventions to encourage girls’ sense of belonging

This study was conducted from September 2021 to February 2022 as a randomised controlled trial (RCT) where participating schools were randomly divided into three groups: two treatment groups which each delivered one of the two interventions to their Year 5 learners, and one control group, which taught Computing to their Year 5 learners in their usual way throughout the duration of the study.

The intervention designed by WISE was titled ‘My Skills My Life’ and was aimed at girls’ self-identification. The design included ten lessons that highlighted the importance of computing and STEM and how these fields impact our lives. The lessons also introduced pupils to female role models working in professions relating closely to computing.

A word search activity related to computing-related jobs.
A word search activity from the My Skills My Life lesson titled ‘My Dream Job’. The purpose of this activity was to introduce a variety of STEM and computing careers.

A core component was a lesson midway through the intervention, where schools in the treatment group held a ‘real-life role model’ session with female role models from the computing industry. In this session, volunteer role models shared their day-to-day work experiences and discussed some fundamental concepts and perceptions related to their role. To do so, the role models first received support and training from the schools based on material provided by WISE. WISE also provided additional training and guidance on resource usage and how to talk about computing careers to make them more understandable and relatable to children.

A tweet about a lesson with a femal computing role model.

In addition to the lesson content and training, WISE created a role model booklet with information on 72 women currently working in computing and associated industries. These women had volunteered to be included in the booklet and to also speak to pupils potentially interested in computing. The main purpose of presenting these role-models was to let the primary pupils meet women who are happy and successful in computing careers.

“I loved learning about [role model name]’s job during the day. It was so cool.”

– Primary school pupil (report, p. 50)

The other intervention in the trial, designed by BIT, was called ‘Code Stars’. This intervention ran over 12 weeks. Schools involved in it first delivered a stand-alone, one-off lesson on artificial intelligence (AI).

A slide from the AI-themed lesson from the Code Stars intervention.
A slide from the AI-themed lesson from the Code Stars intervention. 

After the lesson, the pupils completed a homework task, engaging with their parents or carers. This was followed by a set of regular conversation prompts to encourage parents to have discussions with their children about computing in general and the AI lesson in particular. The original plan was for BIT to implement these conversation prompts, but due to COVID-19-related challenges, teachers had to take the responsibility of sending the prompts. At the end of the intervention, teachers conducted a follow-up lesson.

“Some parents did not want to support their children due to their own lack of confidence. Others did not see it as important as doing the weekly Maths and English homework.”

– Teacher participating in the Code Stars intervention (report, p. 55)

Results and recommendations from the intervention evaluations

These two separate but related approaches aimed at increasing girls’ sense of membership in the computing community and to improve their and their parents’ engagement. The overall impact was evaluated using a mixed method approach; this included case studies, online teacher surveys, parent interviews, pupil surveys, lesson observations, and pupil focus groups.

The impact evaluation did not find conclusive evidence of either intervention having an impact on female pupils’ attitudes towards computing or their intention to study computing in the future. However, the stated intention of girls to study computing was 5.6 percentage points higher in the Code Stars intervention group than in the control group. This difference was statistically significant in some, although not all, of the analysis run; this means we cannot rule out that this result was due to chance, rather than due to the intervention.

One male and two female teenagers at a computer

In addition, qualitative data collected from teachers suggested that the My Skills My Life intervention delivery was very well received and needed only minor adjustments, although this did not translate into evidence of impact on the measured pupil outcomes. Teachers also appreciated the level of detail in the My Skills My Life lesson plans, and the Code Stars intervention was described as fun and engaging.

The independent evaluators of this research study have recommended refinements to each of the interventions to improve their delivery and potential impact, along with suggested evaluation strategies for any future replications of the interventions. 

Want to find out more about increasing girls’ sense of belonging in computing?  

We are very grateful to all the schools, pupils, and teachers who took part in this project. If you would like to stay up-to-date with the Gender Balance in Computing programme, you can sign up to our newsletter. We will also share reports on the other projects within the programme that have explored: 

  • The links between non-formal and formal Computing 
  • The impact of using Computing to solve real-world problems
  • The role that GCSE Options booklets and Subject Choice evenings can play in promoting gender balance in computing

The post Girls’ sense of belonging in the Computing classroom: Study results appeared first on Raspberry Pi.