Tag Archives: Education

More Raspberry Pi labs in West Africa

via Raspberry Pi

Back in May 2013, we heard from Dominique Laloux about an exciting project to bring Raspberry Pi labs to schools in rural West Africa. Until 2012, 75 percent of teachers there had never used a computer. The project has been very successful, and Dominique has been in touch again to bring us the latest news.

A view of the inside of the new Pi lab building

Preparing the new Pi labs building in Kuma Tokpli, Togo

Growing the project

Thanks to the continuing efforts of a dedicated team of teachers, parents and other supporters, the Centre Informatique de Kuma, now known as INITIC (from the French ‘INItiation aux TIC’), runs two Raspberry Pi labs in schools in Togo, and plans to open a third in December. The second lab was opened last year in Kpalimé, a town in the Plateaux Region in the west of the country.

Student using a Raspberry Pi computer

Using the new Raspberry Pi labs in Kpalimé, Togo

More than 400 students used the new lab intensively during the last school year. Dominique tells us more:

“The report made in early July by the seven teachers who accompanied the students was nothing short of amazing: the young people covered a very impressive number of concepts and skills, from the GUI and the file system, to a solid introduction to word processing and spreadsheets, and many other skills. The lab worked exactly as expected. Its 21 Raspberry Pis worked flawlessly, with the exception of a couple of SD cards that needed re-cloning, and a couple of old screens that needed to be replaced. All the Raspberry Pis worked without a glitch. They are so reliable!”

The teachers and students have enjoyed access to a range of software and resources, all running on Raspberry Pi 2s and 3s.

“Our current aim is to introduce the students to ICT using the Raspberry Pis, rather than introducing them to programming and electronics (a step that will certainly be considered later). We use Ubuntu Mate along with a large selection of applications, from LibreOffice, Firefox, GIMP, Audacity, and Calibre, to special maths, science, and geography applications. There are also special applications such as GnuCash and GanttProject, as well as logic games including PyChess. Since December, students also have access to a local server hosting Kiwix, Wiktionary (a local copy of Wikipedia in four languages), several hundred videos, and several thousand books. They really love it!”

Pi lab upgrade

This summer, INITIC upgraded the equipment in their Pi lab in Kuma Adamé, which has been running since 2014. 21 older model Raspberry Pis were replaced with Pi 2s and 3s, to bring this lab into line with the others, and encourage co-operation between the different locations.

“All 21 first-generation Raspberry Pis worked flawlessly for three years, despite the less-than-ideal conditions in which they were used — tropical conditions, dust, frequent power outages, etc. I brought them all back to Brussels, and they all still work fine. The rationale behind the upgrade was to bring more computing power to the lab, and also to have the same equipment in our two Raspberry Pi labs (and in other planned installations).”

Students and teachers using the upgraded Pi labs in Kuma Adamé

Students and teachers using the upgraded Pi lab in Kuma Adamé

An upgrade of the organisation’s first lab, installed in 2012 in Kuma Tokpli, will be completed in December. This lab currently uses ‘retired’ laptops, which will be replaced with Raspberry Pis and peripherals. INITIC, in partnership with the local community, is also constructing a new building to house the upgraded technology, and the organisation’s third Raspberry Pi lab.

Reliable tech

Dominique has been very impressed with the performance of the Raspberry Pis since 2014.

“Our experience of three years, in two very different contexts, clearly demonstrates that the Raspberry Pi is a very convincing alternative to more ‘conventional’ computers for introducing young students to ICT where resources are scarce. I wish I could convince more communities in the world to invest in such ‘low cost, low consumption, low maintenance’ infrastructure. It really works!”

He goes on to explain that:

“Our goal now is to build at least one new Raspberry Pi lab in another Togolese school each year. That will, of course, depend on how successful we are at gathering the funds necessary for each installation, but we are confident we can convince enough friends to give us the financial support needed for our action.”

A desk with Raspberry Pis and peripherals

Reliable Raspberry Pis in the labs at Kpalimé

Get involved

We are delighted to see the Raspberry Pi being used to bring information technology to new teachers, students, and communities in Togo – it’s wonderful to see this project becoming established and building on its achievements. The mission of the Raspberry Pi Foundation is to put the power of digital making into the hands of people all over the world. Therefore, projects like this, in which people use our tech to fulfil this mission in places with few resources, are wonderful to us.

More information about INITIC and its projects can be found on its website. If you are interested in helping the organisation to meet its goals, visit the How to help page. And if you are involved with a project like this, bringing ICT, computer science, and coding to new places, please tell us about it in the comments below.

The post More Raspberry Pi labs in West Africa appeared first on Raspberry Pi.

The possibilities of the Sense HAT

via Raspberry Pi

Did you realise the Sense HAT has been available for over two years now? Used by astronauts on the International Space Station, the exact same hardware is available to you on Earth. With a new Astro Pi challenge just launched, it’s time for a retrospective/roundup/inspiration post about this marvellous bit of kit.

Sense HAT attached to Pi and power cord

The Sense HAT on a Pi in full glory

The Sense HAT explained

We developed our scientific add-on board to be part of the Astro Pi computers we sent to the International Space Station with ESA astronaut Tim Peake. For a play-by-play of Astro Pi’s history, head to the blog archive.

Astro Pi logo with starry background

Just to remind you, this is all the cool stuff our engineers have managed to fit onto the HAT:

  • A gyroscope (sensing pitch, roll, and yaw)
  • An accelerometer
  • A magnetometer
  • Sensors for temperature, humidity, and barometric pressure
  • A joystick
  • An 8×8 LED matrix

You can find a roundup of the technical specs here on the blog.

How to Sense HAT

It’s easy to begin exploring this device: take a look at our free Getting started with the Sense HAT resource, or use one of our Code Club Sense HAT projects. You don’t even need to own one in order to dive in. Emulators are available offline on Raspbian and online on Trinket.

Sense HAT emulator on Trinket

The Sense HAT emulator on trinket.io

Fun and games with the Sense HAT

Use the LED matrix and joystick to recreate games such as Pong or Flappy Bird. Of course, you could also add sensor input to your game: code an egg drop game or a Magic 8 Ball that reacts to how the device moves.

Sense HAT Random Sparkles

Create random sparkles on the Sense HAT

Once December rolls around, you could brighten up your home with a voice-controlled Christmas tree or an advent calendar on your Sense HAT.

If you like the great outdoors, you could also use your Sense HAT to recreate this Hiking Companion by Marcus Johnson. Take it with you on your next hike!

Art with the Sense HAT

The LED matrix is perfect for getting creative. To draw something basic without having to squint at a Python list, use this app by our very own Richard Hayler. Feeling more ambitious? The MagPi will teach you how to create magnificent pixel art. Ben Nuttall has created this neat little Python script for displaying a photo taken by the Raspberry Pi Camera Module on the Sense HAT.

Brett Haines Mathematica on the Sense HAT

It’s also possible to incorporate Sense HAT data into your digital art! The Python Turtle module and the Processing language are both useful tools for creating beautiful animations based on real-world information.

A Sense HAT project that also uses this principle is Giorgio Sancristoforo’s Tableau, a ‘generative music album’. This device creates music according to the sensor data:

Tableau Generative Album

“There is no doubt that, as music is removed by the phonographrecord from the realm of live production and from the imperative of artistic activity and becomes petrified, it absorbs into itself, in this process of petrification, the very life that would otherwise vanish.”

Science with the Sense HAT

This free Essentials book from The MagPi team covers all the Sense HAT science basics. You can, for example, learn how to measure gravity.

Cropped cover of Experiment with the Sense HAT book

Our online resource shows you how to record the information your HAT picks up. Next you can analyse and graph your data using Mathematica, which is included for free on Raspbian. This resource walks you through how this software works.

If you’re seeking inspiration for experiments you can do on our Astro Pis Izzy and Ed on the ISS, check out the winning entries of previous rounds of the Astro Pi challenge.

Thomas Pesquet with Ed and Izzy

Thomas Pesquet with Ed and Izzy

But you can also stick to terrestrial scientific investigations. For example, why not build a weather station and share its data on your own web server or via Weather Underground?

Your code in space!

If you’re a student or an educator in one of the 22 ESA member states, you can get a team together to enter our 2017-18 Astro Pi challenge. There are two missions to choose from, including Mission Zero: follow a few guidelines, and your code is guaranteed to run in space!

The post The possibilities of the Sense HAT appeared first on Raspberry Pi.

Announcing the 2017-18 European Astro Pi challenge!

via Raspberry Pi

Astro Pi is back! Today we’re excited to announce the 2017-18 European Astro Pi challenge in partnership with the European Space Agency (ESA). We are searching for the next generation of space scientists.

YouTube

Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.

Astro Pi is an annual science and coding competition where student-written code is run on the International Space Station under the oversight of an ESA astronaut. The challenge is open to students from all 22 ESA member countries, including — for the first time — associate members Canada and Slovenia.

The format of the competition is changing slightly this year, and we also have a brand-new non-competitive mission in which participants are guaranteed to have their code run on the ISS for 30 seconds!

Mission Zero

Until now, students have worked on Astro Pi projects in an extra-curricular context and over multiple sessions. For teachers and students who don’t have much spare capacity, we wanted to provide an accessible activity that teams can complete in just one session.

So we came up with Mission Zero for young people no older than 14. To complete it, form a team of two to four people and use our step-by-step guide to help you write a simple Python program that shows your personal message and the ambient temperature on the Astro Pi. If you adhere to a few rules, your code is guaranteed to run in space for 30 seconds, and you’ll receive a certificate showing the exact time period during which your code has run in space. No special hardware is needed for this mission, since everything is done in a web browser.

Mission Zero is open until 26 November 2017! Find out more.

Mission Space Lab

Students aged up to 19 can take part in Mission Space Lab. Form a team of two to six people, and work like real space scientists to design your own experiment. Receive free kit to work with, and write the Python code to carry out your experiment.

There are two themes for Mission Space Lab teams to choose from for their projects:

  • Life in space
    You will make use of Astro Pi Vis (“Ed”) in the European Columbus module. You can use all of its sensors, but you cannot record images or videos.
  • Life on Earth
    You will make use of Astro Pi IR (“Izzy”), which will be aimed towards the Earth through a window. You can use all of its sensors and its camera.

The Astro Pi kit, delivered to Space Lab teams by ESA

If you achieve flight status, your code will be uploaded to the ISS and run for three hours (two orbits). All the data that your code records in space will be downloaded and returned to you for analysis. Then submit a short report on your findings to be in with a chance to win exclusive, money-can’t-buy prizes! You can also submit your project for a Bronze CREST Award.

Mission Space Lab registration is open until 29 October 2017, and accepted teams will continue to spring 2018. Find out more.

How do I get started?

There are loads of materials available that will help you begin your Astro Pi journey — check out the Getting started with the Sense HAT resource and this video explaining how to build the flight case.

Questions?

If you have any questions, please post them in the comments below. We’re standing by to answer them!

The post Announcing the 2017-18 European Astro Pi challenge! appeared first on Raspberry Pi.

Astro Pi upgrades on the International Space Station

via Raspberry Pi

In 2015, The Raspberry Pi Foundation built two space-hardened Raspberry Pi units, or Astro Pis, to run student code on board the International Space Station (ISS).

Astro Pi

A space-hardened Raspberry Pi

Astro Pi upgrades

Each school year we run an Astro Pi challenge to find the next generation of space scientists to program them. After the students have their code run in space, any output files are downloaded to ground and returned to them for analysis.

That download process was originally accomplished by an astronaut shutting down the Astro Pi, moving its micro SD card to a crew laptop and copying over the files manually. This used about 20 minutes of precious crew time.

space pi – Create, Discover and Share Awesome GIFs on Gfycat

Watch space pi GIF by sooperdave on Gfycat. Discover more GIFS online on Gfycat

Last year, we passed the qualification to allow the Astro Pi computers to be connected to the Local Area Network (LAN) on board the ISS. This allows us to remotely access them from the ground, upload student code and download the results without having to involve the crew.

This year, we have been preparing a new payload to upgrade the operational capabilities of the Astro Pi units.

The payload consists of the following items:

  • 2 × USB WiFi dongles
  • 5 × optical filters
  • 4 × 32GB micro SD cards

Before anyone asks – no, we’re not going outside into the vacuum of space!

USB WiFi dongle

Currently both Astro Pi units are located in the European Columbus module. They’re even visible on Google Street View (pan down and right)! You can see that we’ve created a bit of a bird’s nest of wires behind them.

Astro Pi

The D-Link DWA-171

The decision to add WiFi capability is partly to clean up the cabling situation, but mainly so that the Astro Pi units can be deployed in ISS locations other than the Columbus module, where we won’t have access to an Ethernet switch.

The Raspberry Pi used in the Astro Pi flight units is the B+ (released in 2014), which does not have any built in wireless connectivity, so we need to use a USB dongle. This particular D-Link dongle was recommended by the European Space Agency (ESA) because a number of other payloads are already using it.

Astro Pi

An Astro Pi unit with WiFi dongle installed

Plans have been made for one of the Astro Pi units to be deployed on an Earth-facing window, to allow Earth-observation student experiments. This is where WiFi connectivity will be required to maintain LAN access for ground control.

Optical filters

With Earth-observation experiments in mind, we are also sending some flexible film optical filters. These are made from the same material as the blue square which is shipped with the Pi NoIR camera module, as noted in this post from when the product was launched. You can find the data sheet here.

Astro Pi

Rosco Roscalux #2007 Storaro Blue

To permit the filter to be easily attached to the Astro Pi unit, the film is laser-cut to friction-fit onto the 12 inner heatsink pins on the base, so that the camera aperture is covered.

Astro Pi

Laser cutting at Makespace

The laser-cutting work was done right here in Cambridge at Makespace by our own Alex Bate, and local artist Diana Probst.

Astro Pi

An Astro Pi with the optical filter installed

32GB micro SD cards

A consequence of running Earth observation experiments is a dramatic increase in the amount of disk space needed. To avoid a high frequency of commanding windows to download imagery to ground, we’re also flying some larger 32GB micro SD cards to replace the current 8GB cards.

Astro Pi

The Samsung Evo MB-MP32DA/EU

This particular type of micro SD card is X-ray proof, waterproof, and resistant to magnetism and heat. Operationally speaking there is no difference, other than the additional available disk space.

Astro Pi

An Astro Pi unit with the new micro SD card installed

The micro SD cards will be flown with a security-hardened version of Raspbian pre-installed.

Crew activities

We have several crew activities planned for when this payload arrives on the ISS. These include the installation of the upgrade items on both Astro Pi units; moving one of the units from Columbus to an earth-facing window (possibly in Node 2); and then moving it back a few weeks later.

Currently it is expected that these activities will be carried out by German ESA astronaut Alexander Gerst who launches to the ISS in November (and will also be the ISS commander for Expedition 57).

Payload launch

We are targeting a January 2018 launch date for the payload. The exact launch vehicle is yet to be determined, but it could be SpaceX CRS 14. We will update you closer to the time.

Questions?

If you have any questions about this payload, how an item works, or why that specific model was chosen, please post them in the comments below, and we’ll try to answer them.

The post Astro Pi upgrades on the International Space Station appeared first on Raspberry Pi.

Make your own game with CoderDojo’s new book

via Raspberry Pi

The first official CoderDojo book, CoderDojo Nano: Build Your Own Website, was a resounding success: thousands of copies have been bought by aspiring CoderDojo Ninjas, and it‘s available in ten languages, including Bulgarian, Czech, Dutch, Lithuanian, Latvian, Portuguese, Spanish, and Slovakian. Now we are delighted to announce the release of the second book in our Create with Code trilogy, titled CoderDojo Nano: Make Your Own Game.

Cover of CoderDojo Nano Make your own game

The paperback book will be available in English from Thursday 7 September (with English flexibound and Dutch versions scheduled to follow in the coming months), enabling young people and adults to learn creative and fun coding skills!

What will you learn?

The new book explains the fundamentals of the JavaScript language in a clear, logical way while supporting you to create your very own computer game.

Pixel image of laptop displaying a jump-and-run game

You will learn how to animate characters, create a world for your game, and use the physics of movement within it. The book is full of clear step-by-step instructions and illustrated screenshots to make reviewing your code easy. Additionally, challenges and open-ended prompts at the end of each section will encourage you to get creative while making your game.

This book is the perfect first step towards understanding game development, particularly for those of you who do not (yet) have a local Dojo. Regardless of where you live, using our books you too can learn to ‘Create with Code’!

Tried and tested

As always, CoderDojo Ninjas from all around the world tested our book, and their reactions have been hugely positive. Here is a selection of their thoughts:

“The book is brilliant. The [game] is simple yet innovative. I personally love it, and want to get stuck in making it right away!”

“What I really like is that, unlike most books on coding, this one properly explains what’s happening, and what each piece of code does and where it comes from.”

“I found the book most enjoyable. The layout is great, with lots of colour, and I found the information very easy to follow. The Ninja Tips are a great help in case you get a bit stuck. I liked that the book represents a mix of boy and girl Ninjas — it really makes coding fun for all.”

“The book is a great guide for both beginners and people who want to do something creative with their knowledge of code. Even people who cannot go to a CoderDojo can learn code using this book!”

Writer Jurie Horneman

Author of CoderDojo Nano: Make Your Own Game Jurie Horneman has been working in the game development industry for more than 15 years.

stuffed toy rabbit wearing glasses

Jurie would get on well with Babbage, I think.

He shares how he got into coding, and what he has learnt while creating this awesome book:

“I’ve been designing and programming games since 1991, starting with ancient home computers, and now I’m working with PCs and consoles. As a game designer, it’s my job to teach players the rules of the game in a fun and playful manner — that gave me some useful experience for writing the book.

I believe that, if you want to understand something properly, you have to teach it to others. Therefore, writing this book was very educational for me, as I hope reading it will be for learners.”

Asked what his favorite thing about the book is, Jurie said he loves the incredible pixel art design: “The artist (Gary J Lucken, Army of Trolls) did a great job to help explain some of the abstract concepts in the book.”

Pixel image of a landscape with an East Asian temple on a lonely mountain

Gary’s art is also just gorgeous.

How can you get your copy?

You can pre-order CoderDojo Nano: Make Your Own Game here. Its initial pricing is £9.99 (around €11), and discounted copies with free international delivery are available here.

The post Make your own game with CoderDojo’s new book appeared first on Raspberry Pi.

Create a text-based adventure game with FutureLearn

via Raspberry Pi

Learning with Raspberry Pi has never been so easy! We’re adding a new course to FutureLearn today, and you can take part anywhere in the world.

FutureLearn: the story so far…

In February 2017, we were delighted to launch two free online CPD training courses on the FutureLearn platform, available anywhere in the world. Since the launch, more than 30,000 educators have joined these courses: Teaching Programming in Primary Schools, and Teaching Physical Computing with Raspberry Pi and Python.

Futurelearn Raspberry Pi

Thousands of educators have been building their skills – completing tasks such as writing a program in Python to make an LED blink, or building a voting app in Scratch. The two courses are scaffolded to build skills, week by week. Learners are supported by videos, screencasts, and articles, and they have the chance to apply what they have learned in as many different practical projects as possible.

We have had some excellent feedback from learners on the courses, such as Kyle Wilke who commented: “Fantastic course. Nice integration of text-based and video instruction. Was very impressed how much support was provided by fellow students, kudos to us. Can’t wait to share this with fellow educators.”

Brand new course

We are launching a new course this autumn. You can join lead educator Laura Sachs to learn object-oriented programming principles by creating your own text-based adventure game in Python. The course is aimed at educators who have programming experience, but have never programmed in the object-oriented style.

Future Learn: Object-oriented Programming in Python trailer

Our newest FutureLearn course in now live. You can join lead educator Laura Sachs to learn object-oriented programming principles by creating your own text-based adventure game in Python. The course is aimed at educators who have programming experience, but have never programmed in the object-oriented style.

The course will introduce you to the principles of object-oriented programming in Python, showing you how to create objects, functions, methods, and classes. You’ll use what you learn to create your own text-based adventure game. You will have the chance to share your code with other learners, and to see theirs. If you’re an educator, you’ll also be able to develop ideas for using object-oriented programming in your classroom.

Take part

Sign up now to join us on the course, starting today, September 4. Our courses are free to join online – so you can learn wherever you are, and whenever you want.

The post Create a text-based adventure game with FutureLearn appeared first on Raspberry Pi.