Tag Archives: Education

David Cuartielles and Bruce Sterling at Sonar

via Arduino Blog

Photo: Sonar+D

Sónar+D is the international conference that brings together a combination of activities with a common theme: the relationship between creativity and technology and the digital transformation of the cultural industries involved.

During latest edition David Cuartielles gave a talk about the value of Open Source and a workshop with Alessandro Contini titled Making Noise with Arduino

David presented some examples like:

  • The Alcontrol Device (a breath analyser that detects high alcohol levels and limits mobile usage of a user depending on how drunk he/she is)
  • The involuntary dance machine that uses electrical stimulus to different muscles
  • A 5-day hack to a car that needed be driven remotely by musicians playing live
  • A large scale light installation for the Jakarta Marathon

He also got the opportunity to talk about robotics, kids learning code and electronics, and the future of Arduino. Later on Bruce Sterling, curator of Casa Jasmina,  was the protagonist of the festival’s closing keynote and talked about technology, music and the past/current state of the industry.

Photo: Sonar+D
News originally posted on Arduino Verkstad blog

Learning From Transparent Microchips

via Hackaday » hardware

Microchips and integrated circuits are usually treated as black boxes; a signal goes in, and a signal goes out, and everything between those two events can be predicted and accurately modeled from a datasheet. Of course, the reality is much more complex, as any picture of a decapped IC will tell you.

[Jim Conner] got his hands on a set of four ‘teaching’ microchips made by Motorola in 1992 that elucidates the complexities of integrated circuitry perfectly: instead of being clad in opaque epoxy, these chips are encased in transparent plastic.

The four transparent chips are beautiful works of engineering art, with the chip carriers, the bond wires, and the tiny square of silicon all visible to the naked eye. The educational set covers everything from resistors, n-channel and p-channel MOSFETS, diodes, and a ring oscillator circuit.

[Jim] has the chips and the datasheets, but doesn’t have the teaching materials and lab books that also came as a kit. In lieu of proper pedagogical technique, [Jim] ended up doing what any of us would: looking at it with a microscope and poking it with a multimeter and oscilloscope.

While the video below only goes over the first chip packed full of resistors, there are some interesting tidbits. One of the last experiments for this chip includes a hall effect sensor, in this case just a large, square resistor with multiple contacts around the perimeter. When a magnetic field is applied, some of the electrons are deflected, and with a careful experimental setup this magnetic field can be detected on an oscilloscope.

[Jim]’s video is a wonderful introduction to the black box of integrated circuits, but the existence of clear ICs leaves us wondering why these aren’t being made now. It’s too much to ask for Motorola to do a new run of these extremely educational chips, but why these chips are relegated to a closet in an engineering lab or the rare eBay auction is anyone’s guess.


Filed under: hardware

Autodesk teams up with Arduino to electrify creativity and coding

via Arduino Blog

basic-kit

We are excited to introduce our new collaboration with Autodesk, launching with us the Arduino Basic Kit in the US! Starting today we are bringing creativity and electronics to everyone wanting to get started with more than 30 components added into the 123D Circuits simulator and 15 step-by-step tutorials available through the Project Ignite learning platform.

With the Arduino Basic Kit you’ll be able to access digital simulations for a unique experience of engagement with the kit, understanding and tapping right away into the power of smart objects.

“Arduino is creating new opportunities for makers and educators to get hands on with coding and electronics,” said Samir Hanna, vice president and general manager, Consumer and 3D Printing, Autodesk. “Our collaboration with Arduino will enable our passionate community of users to unlock their creativity while building the skills to succeed in a technologically-focused world.”

“By collaborating with Autodesk on the Arduino Basic Kit we are showing that designing electronics is a great educational area for teachers,” said Massimo Banzi, co-founder of Arduino. “By offering our tutorials in digital format instructors can involve students of all ages on interactive projects within Project Ignite platform.”

Autodesk recently launched Project Ignite during the White House National Week of Making to provide a free and open learning platform that builds the skills of young learners through creative, hands-on design experiences focused on the latest technology trends like 3D printing and electronics. Through these efforts, Autodesk aims to empower the next generation of innovators with the tools and confidently enter this new future of making things.

basic-kit2

 

What’s in the Arduino Basic Kit:

  • All the physical and digital components you need to build simple projects and learn how to turn an idea into reality using Arduino and Autodesk 123D Circuits.
  • The digital simulations in 123D Circuits provide a unique experience to engage and learn about the power of smart objects .
  • Exclusive online access to 15 step-by-step tutorials, through the Project Ignite learning platform, to make simple projects using components that let you control the physical world.

Projects include:

  • Get to know your tools: An introduction to the concepts you need to know to advance
  • Love-O-Meter to measure how hot-blooded you are
  • Zoetrope to create a mechanical animation you can play forward or reverse
  • Knock Lock to tap a secret code and open the door

Get your kit today, exclusively at www.autodesk.com/arduino for $84.00.

Join the conversation on the Arduino Forum.

 

Explaining the misterious technologies driving everyday objects

via Arduino Blog

DSC08759

Every year the students of the Copenhagen Institute of Interaction Design (CIID) attend the Physical Computing class as part of their curriculum.

Having a small delegation of the Arduino team teaching this class has become quite a ritual. This past March Ubi De Feo, Alice Pintus, and Lorenzo Romagnoli runned the two-weeks-long intensive class.

Teaching at CIID is great experience, since you are surrounded by incredibly motivated and curious students, that are doing everything possible to design amazing projects and prototypes.

The topic of this year was prototyping interactive installations for a Science Center that would explain in a playful and engaging way how a technology works. For most of the students this was the first experience with physical computing, but even in such short time they were able to build eight different prototypes. The projects explain in an interactive way the science behind computer viruses, allergies, video compression, machine learning, laser printing, digital music synthesis, binary numbers and neuroprosthetic.

In Explaining laser printing Victoria Hammel, Chelsey Wickmark, Ciaràn Duffy, Feild Craddock demonstrate how the laser printer works. By using 16 servomotors connected to an Arduino UNO to move a matrix of magnets they were able to attract iron filings and draw letters on paper.

In Troyan 77 Karan Chaitanya Mudgal, Liliana Lambriev, Gunes Kantaroglu, Dhruv Saxena visualize the effects of a Trojan Virus harming your computer. Connecting Processing to Arduino they were able to create an overlay projection on top of the maze representative of the effect of the viruses on a computer.

Sound Blocks by John Ferreira, Alejandra Molina and Andreas Refsgaard is an musical instrument that explain how to compose sounds combining multiple soundwaves. The prototype was built using Arduino as a midi controller for Ableton.

 

Astro Pi: Mission Update 4

via Raspberry Pi

Astro_Pi_Logo_WEB-300px

Just over a week ago now we closed the Secondary School phase of the Astro Pi competition after a one week extension to the deadline. Students from all over the UK have uploaded their code hoping that British ESA Astronaut Tim Peake win run it on the ISS later this year!

Last week folks from the leading UK Space companies, the UK Space Agency and ESERO UK met with us at Pi Towers in Cambridge to do the judging. We used the actual flight Astro Pi units to test run the submitted code. You can see one of them on the table in the picture below:

The standard of entries was incredibly high and we were blown away by how clever some of them were!

Doug Liddle of SSTL said:

“We are delighted that the competition has reached so many school children and we hope that this inspires them to continue coding and look to Space for great career opportunities”

British ESA Astronaut Tim Peake - photo provided by UK Space Agency under CC BY-ND

British ESA Astronaut Tim Peake – photo provided by UK Space Agency under CC BY-ND

Jeremy Curtis, Head of Education at the UK Space Agency, said:

“We’re incredibly impressed with the exciting and innovative Astro Pi proposals we’ve received and look forward to seeing them in action aboard the International Space Station.

Not only will these students be learning incredibly useful coding skills, but will get the chance to translate those skills into real experiments that will take place in the unique environment of space.”

When Tim Peake flies to the ISS in December he will have the two Astro Pis in his personal cargo allowance. He’ll also have 10 especially prepared SD cards which will contain the winning applications. Time is booked into his operations schedule to deploy the Astro Pis and set the code running and afterwards he will recover any output files created. These will then be returned to their respective owners and made available online for everyone to see.

Code was received for all secondary school key stages and we even have several from key stage 2 primary schools. These were judged along with the key stage 3 entries. So without further adieu here comes a breakdown of who won and what their code does:

Each of these programs have been assigned an operational code name that will be used when talking about them over the space to ground radio. These are essentially arbitrary so don’t read into them too much!

Ops name: FLAGS

  • School: Thirsk School
  • Team name: Space-Byrds
  • Key stage: 3
  • Teacher: Dan Aldred
  • The judges had a lot of fun with this. Their program uses telemetry data provided by NORAD along with the Real Time Clock on the Astro Pi to computationally predict the location of the ISS (so it doesn’t need to be online). It then works out what country that location is within and shows its flag on the LED matrix along with a short phrase in the local language.

Ops name: MISSION CONTROL

  • School: Cottenham Village College
  • Team name: Kieran Wand
  • Key stage: 3
  • Teacher: Christopher Butcher
  • Kieran’s program is an environmental system monitor and could be used to cross check the ISS’s own life support system. It continually measures the temperature, pressure and humidity and displays these in a cycling split-screen heads up display. It has the ability to raise alarms if these measurements move outside of acceptable parameters. We were especially impressed that code had been written to compensate for thermal transfer between the Pi CPU and Astro Pi sensors.

Andy Powell of the Knowledge Transfer Network said:

“All of the judges were impressed by the quality of work and the effort that had gone into the winning KS3 projects and they produced useful, well thought through and entertaining results”

Ops name: TREES

  • School: Westminster School
  • Team name: EnviroPi
  • Key stage: 4 (and equivalent)
  • Teacher: Sam Page
  • This entry will be run in the cupola module of the ISS with the Astro Pi NoIR camera pointing out of the window. The aim is to take pictures of the ground and to later analyse them using false colour image processing. This will produce a Normalised Differentiated Vegetation Index (NDVI) for each image which is a measure of plant health. They have one piece of code which will run on the ISS to capture the images and another that will run on the ground after the mission to post process and analyse the images captured. They even tested their code by going up in a light aircraft to take pictures of the ground!

Ops name: REACTION GAMES

  • School: Lincoln UTC
  • Team name: Team Terminal
  • Key stage: 4 (and equivalent)
  • Teacher: Mark Hall
  • These students have made a whole suite of various reaction games complete with a nice little menu system to let the user choose. The games also record your response times with the eventual goal to investigate how crew reaction time changes over the course of a long term space flight. This entry caused all work to cease during the judging for about half an hour!

Lincoln UTC have also won the prize for the best overall submission in the Secondary School completion. This earns them a photograph of their school taken from space by an Airbus or SSTL satellite. Go and make a giant space invader please!

Ops name: RADIATION

  • School: Magdalen College School
  • Team name: Arthur, Alexander and Kiran
  • Key stage: 5 (and equivalent)
  • Teacher: Dr Jesse Petersen
  • This team have successfully made a radiation detector using the Raspberry Pi camera module, the possibility of which was hinted at during our Astro Pi animation video from a few months ago. The camera lens is blanked off to prevent light from getting in but this still allows high energy space radiation to get through. Due to the design of the camera the sensor sees the impacts of these particles as tiny specks of light. The code then uses OpenCV to measure the intensity of these specks and produces an overall measurement of the level of radiation happening.

What blew us away was that they had taken their Astro Pi and camera module along to the Rutherford Appleton Laboratory and fired a neutron cannon at it to test it was working!!!

The code can even compensate for dead pixels in the camera sensor. I am wondering if they killed some pixels with the neutron cannon and then had to add that code out of necessity? Brilliant.

These winning programs will be joined on the ISS by the winners of the Primary School Competition which closed in April:

Ops name: MINECRAFT

  • School: Cumnor House Girl’s School
  • Team name: Hannah Belshaw
  • Key stage: 2
  • Teacher: Peter Kelly
  • Hannah’s entry is to log data from the Astro Pi sensors but to visualise it later using structures in a Minecraft world. So columns of blocks are used to represent environmental measurements and a giant blocky model of the ISS itself (that moves) is used to represent movement and orientation. The code was written, under Hannah’s guidance, by Martin O’Hanlon who runs Stuff About Code. The data logging program that will run on the ISS produces a CSV file that can be consumed later by the visualisation code to play back what happened when Tim Peak was running it in space. The code is already online here.

Ops name: SWEATY ASTRONAUT

  • School: Cranmere Primary School
  • Team name: Cranmere Code Club
  • Key stage: 2
  • Teacher: Richard Hayler
  • Although they were entitled to have their entry coded by us at Raspberry Pi the kids of the Cranmere Code Club are collectively writing their program themselves. The aim is to try and detect the presence of a crew member by monitoring the environmental sensors of the Astro Pi. Particularly humidity. If a fluctuation is detected it will scroll a message asking if someone is there. They even made a Lego replica of the Astro Pi flight case for their testing!

Obviously the main winning prize is to have your code flown and run on the ISS. However the UK Space companies also offered a number of thematic prizes which were awarded independently of those that have been chosen to fly. Some cross over with the other winners was expected here.

  • Space Sensors
    Hannah Belshaw, from Cumnor House Girl’s School with her idea for Minecraft data visualisation.
  • Space Measurements
    Kieran Wand from Cottenham Village College for his ISS environment monitoring system.
  • Imaging and Remote Sensing
    The EnviroPi team from Westminster School with their experiment to measure plant health from space using NDVI images.
  • Space Radiation
    Magdalen College, Oxford with their Space Radiation Detector.
  • Data Fusion
    Nicole Ashworth, from Reading, for her weather reporting system; comparing historical weather data from the UK with the environment on the ISS.
  • Coding Excellence
    Sarah and Charlie Maclean for their multiplayer Labyrinth game.

Pat Norris of CGI said:

“It has been great to see so many schools getting involved in coding and we hope that this competition has inspired the next generation to take up coding, space systems or any of the many other opportunities the UK space sector offers. We were particularly impressed by the way Charlie structured his code, added explanatory comments and used best practice in developing the functionality”

We’re aiming to have all the code that was submitted to the competition on one of the ten SD cards that will fly. So your code will still fly even if it won’t be scheduled to be run in space. The hope is that, during periods of downtime, Tim may have a look through some of the other entries and run them manually. But this depends on a lot of factors outside of our control and so we can’t promise anything.

But wait, there’s more?

There is still opportunity for all schools to get involved with Astro Pi!

There will be an on-orbit activity during the mission (probably in January or February) that you can all do at the same time as Tim. After the competition winning programs have all finished the Astro Pi will enter a phase of flight data recording. Just like the black box on an aircraft.

This will make the Astro Pi continually record everything from all its sensors and save the data into a file that you can get! If you set your Astro Pi up in the same way (the software will be provided by us) then you can compare his measurements with yours taken on the ground.

There is then a lot of educational value in looking at the differences and understanding why they occur. For instance you could look at the accelerometer data to find out when ISS reboosts occurred or study the magnetometer data to find out how the earth’s magnetic field changes as they orbit the earth. A number of free educational resources will be provided that will help you to leverage the value of this exercise.

The general public can also get involved when the Sense HAT goes on general sale in a few weeks time.

Libby Jackson of the UK Space Agency said:

“Although the competition is over, the really exciting part of the project is just beginning. All of the winning entries will get see their code run in space and thousands more can take part in real life space experiments through the Flight Data phase”

IMG_0198

The post Astro Pi: Mission Update 4 appeared first on Raspberry Pi.

Skycademy – Free High Altitude CPD

via Raspberry Pi

We’re looking for 24 teachers (or youth leaders) to take part in a FREE two-and-a-half day Continuing Professional Development (CPD) event aiming to provide experience of high altitude ballooning to educators, and demonstrating how it can be used as an engaging teaching opportunity.

Over the last few year I’ve seen many awesome uses of the Raspberry Pi, but one of my favourites by far is seeing the Pi used as a payload tracker for High Altitude Ballooning (HAB) projects.

One of the most prolific HAB enthusiasts is Dave Akerman, who has launched many flights using the Raspberry Pi, from the first flight back in 2012

…to the launch of a potato for Heston Blumenthal’s “Great British Food”…

…and even capturing some amazing images of the recent Solar Eclipse from 30km up.

Many schools are also seeing the opportunities for learning that a HAB flight presents, incorporating physics, maths, computing and geography into one project.

Here’s a project from William Howard School in Cumbria, whose students built their own tracker connected to a Pi.

In my previous life as a teacher, I organised a launch with my own students, and we had help from Dave Akerman on the day. This turned out to be super helpful, as it takes some planning and there’s a lot to remember.

One of the hardest parts of running a flight is the number of different aspects you have to plan and manage. You can test the hardware and software to a certain point, but there’s limited opportunity for a practice flight. Having experience is really helpful.

For this reason we’re running our first “Skycademy”, during which we will be giving attendees hands-on experience of a flight. The event will be free to attend and will be spread over two and a half days between the 24th and 26th of August.

  • Day 1 – Planning and workshop sessions on all aspects of HAB flights.
  • Day 2 – Each team launches their payload, tracks, follows and recovers it.
  • Day 3 – Teams gather together for plenary morning.

Our aim is to support and inspire teachers and other adults working with young people. The hope is that those that attend will return to lead a project with their groups that will do something amazing.

Attendees will be supported throughout the course by experienced HAB enthusiasts and the Raspberry Pi Education Team. If you are a UK teacher or work with young people (scout leader, youth leader etc), you can apply here.

The post Skycademy – Free High Altitude CPD appeared first on Raspberry Pi.