Tag Archives: ESP8266

Bus timer project

via Dangerous Prototypes

platform_m-600

Limpkin published a new build:

For once, this project was not for me… it was for my wife !
Every morning she takes the bus then train to go to work. If she misses her train, she has to wait for more than 30 minutes for the next one. Not missing her bus is therefore quite important.
Where we live every bus station has a display letting you know in real time when the next bus will be there. My first thought was to reverse engineer its RF signal but something easier then came to mind.
In the very same bus stations, a small QR code brings you to a web page displaying the very same “minutes before bus arrival”… HTML parsing therefore made more sense given that I was fairly busy with other projects.

See the full post on his blog.

ESP8266 Home Monitor Is Stylishly Simplistic

via hardware – Hackaday

It’s often said that “Less is More”, and we think that the chic ESP8266 environmental monitor posted by Thingiverse user [bkpsu] definitely fits the bill. Dubbed “Kube”, the device is a 3D printed white cube with an OLED display in the center, which [bkpsu] says was designed specifically for the approval of his wife. Weirdly, she didn’t like the look of bare PCBs on the wall.

Multiple Kubes allow for whole-house monitoring.

Inside, things are a little more complex. The Kube uses the NodeMCU development board, and a custom breakout that [bkpsu] designed to interface with the display and sensors. For temperature and humidity monitoring, the Kube is using the ever-popular DHT22, and [bkpsu] mentions that he has future plans for things like motion sensors and direct control of RGB LED strips. All the data collected by the Kube is piped into openHAB via MQTT.

On the very detailed Thingiverse page, [bkpsu] gives background information on his design goals for the project, tips for printing out a high-quality case, a parts list with Amazon links, and pinout information for getting it all wired up. The PCB is even available on OSH Park for those who want a Kube of their own.

Even with all the stick home monitoring and automation products on the market today, many hackers simply can’t bring themselves to buying a turn-key commercial product. But we think with the results hackers have been getting rolling their own solutions, they just might be on to something.


Filed under: green hacks, hardware, home hacks

ESP8266 Deep Sleep with Arduino IDE

via Dangerous Prototypes

Deep-sleep-blog-1280-600

Rui Santos has written a great guide shows us what’s Deep Sleep and how to use it with the ESP8266 in the Arduino IDE.

With most of the ESP8266 modules, you can’t change the hardware to save power, but you can write software to do it. If you use the sleep functions with the ESP8266, it will draw less power and your batteries will last longer. In this guide, we’re going to talk about Deep Sleep with the ESP8266.

See the full post on his blog, Random Nerd Tutorials.

Check out the video after the break.

WiFi TFT touch LCD weather station with ESP8266

via Dangerous Prototypes

lcd-weatherstation-with-esp8266

Erich Styger built this ESP8266 WiFi weather station with touch LCD and wrote a post on his blog detailing its assembly:

After the “WiFi OLED Mini Weather Station with ESP8266“, here is another one: this time with Touch LCD :-)  In the previous article (“WiFi OLED Mini Weather Station with ESP8266“) I have used the OLED kit from blog.squix.org. And as promised, this time it is about the “ESP8266 WiFi Color Display Kit”

Project info at MCU on Eclipse. Code is available on GitHub.

Hackaday Prize Entry: 3D Printed Linear Actuator Does 2kg+

via hardware – Hackaday

The rabbit hole of features and clever hacks in [chiprobot]’s NEMA17 3D Printed Linear Actuator is pretty deep. Not only can it lift 2kg+ of mass easily, it is mostly 3D printed, and uses commonplace hardware like a NEMA 17 stepper motor and a RAMPS board for motion control.

The main 3D printed leadscrew uses a plug-and-socket design so that the assembly can be extended easily to any length desired without needing to print the leadscrew as a single piece. The tip of the actuator even integrates a force sensor made from conductive foam, which changes resistance as it is compressed, allowing the actuator some degree of feedback. The force sensor is made from a 3M foam earplug which has been saturated with a conductive ink. [chiprobot] doesn’t go into many details about his specific method, but using conductive foam as a force sensor is a fairly well-known and effective hack. To top it all off, [chiprobot] added a web GUI served over WiFi with an ESP32. Watch the whole thing in action in the video embedded below.

[chiprobot] is no stranger to DIY linear actuators, you can see his gearmotor version and stepper version on Thingiverse. He’s certainly stepped it up in terms of power and size with this Hackaday Prize Entry.


Filed under: hardware, The Hackaday Prize