Tag Archives: machine learning

The AI4K12 project: Big ideas for AI education

via Raspberry Pi

What is AI thinking? What concepts should we introduce to young people related to AI, including machine learning (ML), and data science? Should we teach with a glass-box or an opaque-box approach? These are the questions we’ve been grappling with since we started our online research seminar series on AI education at the Raspberry Pi Foundation, co-hosted with The Alan Turing Institute.

Over the past few months, we’d already heard from researchers from the UK, Germany, and Finland. This month we virtually travelled to the USA, to hear from Prof. Dave Touretzky (Carnegie Mellon University) and Prof. Fred G. Martin (University of Massachusetts Lowell), who have pioneered the influential AI4K12 project together with their colleagues Deborah Seehorn and Christina Gardner-McLure.

The AI4K12 project

The AI4K12 project focuses on teaching AI in K-12 in the US. The AI4K12 team have aligned their vision for AI education to the CSTA standards for computer science education. These Standards, published in 2017, describe what should be taught in US schools across the discipline of computer science, but they say very little about AI. This was the stimulus for starting the AI4K12 initiative in 2018. A number of members of the AI4K12 working group are practitioners in the classroom who’ve made a huge contribution in taking this project from ideas into the classroom.

Dave Touretzky presents the five big ideas of the AI4K12 project at our online research seminar.
Dave gave us an overview of the AI4K12 project (click to enlarge)

The project has a number of goals. One is to develop a curated resource directory for K-12 teachers, and another to create a community of K-12 resource developers. On the AI4K12.org website, you can find links to many resources and sign up for their mailing list. I’ve been subscribed to this list for a while now, and fascinating discussions and resources have been shared. 

Five Big Ideas of AI4K12

If you’ve heard of AI4K12 before, it’s probably because of the Five Big Ideas the team has set out to encompass the AI field from the perspective of school-aged children. These ideas are: 

  1. Perception — the idea that computers perceive the world through sensing
  2. Representation and reasoning — the idea that agents maintain representations of the world and use them for reasoning
  3. Learning — the idea that computers can learn from data
  4. Natural interaction — the idea that intelligent agents require many types of knowledge to interact naturally with humans
  5. Societal impact — the idea that artificial intelligence can impact society in both positive and negative ways

Sometimes we hear concerns that resources being developed to teach AI concepts to young people are narrowly focused on machine learning, particularly supervised learning for classification. It’s clear from the AI4K12 Five Big Ideas that the team’s definition of the AI field encompasses much more than one area of ML. Despite being developed for a US audience, I believe the description laid out in these five ideas is immensely useful to all educators, researchers, and policymakers around the world who are interested in AI education.

Fred Martin presents one of the five big ideas of the AI4K12 project at our online research seminar.
Fred explained how ‘representation and reasoning’ is a big idea in the AI field (click to enlarge)

During the seminar, Dave and Fred shared some great practical examples. Fred explained how the big ideas translate into learning outcomes at each of the four age groups (ages 5–8, 9–11, 12–14, 15–18). You can find out more about their examples in their presentation slides or the seminar recording (see below). 

I was struck by how much the AI4K12 team has thought about progression — what you learn when, and in which sequence — which we do really need to understand well before we can start to teach AI in any formal way. For example, looking at how we might teach visual perception to young people, children might start when very young by using a tool such as Teachable Machine to understand that they can teach a computer to recognise what they want it to see, then move on to building an application using Scratch plugins or Calypso, and then to learning the different levels of visual structure and understanding the abstraction pipeline — the hierarchy of increasingly abstract things. Talking about visual perception, Fred used the example of self-driving cars and how they represent images.

A diagram of the levels of visual structure.
Fred used this slide to describe how young people might learn abstracted elements of visual structure

AI education with an age-appropriate, glass-box approach

Dave and Fred support teaching AI to children using a glass-box approach. By ‘glass-box approach’ we mean that we should give students information about how AI systems work, and show the inner workings, so to speak. The opposite would be a ‘opaque-box approach’, by which we mean showing students an AI system’s inputs and the outputs only to demonstrate what AI is capable of, without trying to teach any technical detail.

AI4K12 advice for educators supporting K-12 students: 1. Use transparent AI demonstrations. 2. Help students build mental models. 3. Encourage students to build AI applications.
AI4K12 teacher guidelines for AI education

Our speakers are keen for learners to understand, at an age-appropriate level, what is going on “inside” an AI system, not just what the system can do. They believe it’s important for young people to build mental models of how AI systems work, and that when the young people get older, they should be able to use their increasing knowledge and skills to develop their own AI applications. This aligns with the views of some of our previous seminar speakers, including Finnish researchers Matti Tedre and Henriikka Vartiainen, who presented at our seminar series in November

What is AI thinking?

Dave addressed the question of what AI thinking looks like in school. His approach was to start with computational thinking (he used the example of the Barefoot project’s description of computational thinking as a starting point) and describe AI thinking as an extension that includes the following skills:

  • Perception 
  • Reasoning
  • Representation
  • Machine learning
  • Language understanding
  • Autonomous robots

Dave described AI thinking as furthering the ideas of abstraction and algorithmic thinking commonly associated with computational thinking, stating that in the case of AI, computation actually is thinking. My own view is that to fully define AI thinking, we need to dig a bit deeper into, for example, what is involved in developing an understanding of perception and representation.

An image demonstrating that AI systems for object recognition may not distinguish between a real banana on a desk and the photo of a banana on a laptop screen.
Image: Max Gruber / Better Images of AI / Ceci n’est pas une banane / CC-BY 4.0

Thinking back to Matti Tedre and Henriikka Vartainen’s description of CT 2.0, which focuses only on the ‘Learning’ aspect of the AI4K12 Five Big Ideas, and on the distinct ways of thinking underlying data-driven programming and traditional programming, we can see some differences between how the two groups of researchers describe the thinking skills young people need in order to understand and develop AI systems. Tedre and Vartainen are working on a more finely granular description of ML thinking, which has the potential to impact the way we teach ML in school.

There is also another description of AI thinking. Back in 2020, Juan David Rodríguez García presented his system LearningML at one of our seminars. Juan David drew on a paper by Brummelen, Shen, and Patton, who extended Brennan and Resnick’s CT framework of concepts, practices, and perspectives, to include concepts such as classification, prediction, and generation, together with practices such as training, validating, and testing.

What I take from this is that there is much still to research and discuss in this area! It’s a real privilege to be able to hear from experts in the field and compare and contrast different standpoints and views.

Resources for AI education

The AI4K12 project has already made a massive contribution to the field of AI education, and we were delighted to hear that Dave, Fred, and their colleagues have just been awarded the AAAI/EAAI Outstanding Educator Award for 2022 for AI4K12.org. An amazing achievement! Particularly useful about this website is that it links to many resources, and that the Five Big Ideas give a framework for these resources.

Through our seminars series, we are developing our own list of AI education resources shared by seminar speakers or attendees, or developed by us. Please do take a look.

Join our next seminar

Through these seminars, we’re learning a lot about AI education and what it might look like in school, and we’re having great discussions during the Q&A section.

On Tues 1 February at 17:00–18:30 GMT, we’ll hear from Tara Chklovski, who will talk about AI education in the context of the Sustainable Development Goals. To participate, click the button below to sign up, and we will send you information about joining. I really hope you’ll be there for this seminar!

The schedule of our upcoming seminars is online. You can also (re)visit past seminars and recordings on the blog.

The post The AI4K12 project: Big ideas for AI education appeared first on Raspberry Pi.

AIfES releases exciting new version of TinyML library for Arduino

via Arduino Blog

Last July AIfES (Artificial Intelligence for Embedded Systems) from the Fraunhofer Institute for Microelectronic Circuits and Systems (IMS) was launched. This open source solution makes it possible to run, and even train, artificial neural networks (ANN) on almost any hardware, including the Arduino UNO. 

The team hasn’t stopped work on this exciting machine learning platform, and an update just landed that you’ll definitely want to check out.

The new AIfES-Express API

AIfES-Express is an alternative, simplified API that’s integrated directly into the library. The new features allow you to run and train a feed-forward neural network (FNN) with only a few lines of code.

Q7 weight quantization

This update enables the simple Q7 (8-bit) quantization of the weights of a trained FNN. This significantly reduces the memory required. And depending where it’s being deployed, it brings a significant increase in speed along with it.

This is especially true for controllers without FPU (Floating Point Unit). The quantization can be handled directly in AIfES® (and AIfES-Express) on the controller, PC, or wherever you’re using it. There are even example Python scripts to perform the quantization directly in Keras or PyTorch. The quantized weights can then be used in AIfES®.

Advanced Arm CMSIS integration

AIfES® now provides the option to use the Arm CMSIS (DSP and NN) library for a faster runtime.

New examples to help you get building

A simple gesture recognition application can be trained on-device for different Arduino boards, including:

You can play tic-tac-toe against a microcontroller, with a pre-trained net that’s practically impossible to defeat. There are F32 and quantized Q7 versions to try. The Q7 version even runs on the Arduino UNO. The AIfES® team do issue a warning that it can be demoralizing to repeatedly lose against an 8-bit controller!

This Portenta H7 example is particularly impressive. It shows you how to train in the background on one core, while using the other to run a completely different task. In the example, the M7 core of the Portenta H7 can even give the M4 core a task to train an FNN. The optimized weights can then be used by the M7 to perform the FNN with no delay, due to the training.

Here’s a link to the GitHub repository so you can give this a go yourself.

The post AIfES releases exciting new version of TinyML library for Arduino appeared first on Arduino Blog.

Snapshots from the history of AI, plus AI education resources

via Raspberry Pi

In Hello World issue 12, our free magazine for computing educators, George Boukeas, DevOps Engineer for the Astro Pi Challenge here at the Foundation, introduces big moments in the history of artificial intelligence (AI) to share with your learners:

The story of artificial intelligence (AI) is a story about humans trying to understand what makes them human. Some of the episodes in this story are fascinating. These could help your learners catch a glimpse of what this field is about and, with luck, compel them to investigate further.                   

The imitation game

In 1950, Alan Turing published a philosophical essay titled Computing Machinery and Intelligence, which started with the words: “I propose to consider the question: Can machines think?” Yet Turing did not attempt to define what it means to think. Instead, he suggested a game as a proxy for answering the question: the imitation game. In modern terms, you can imagine a human interrogator chatting online with another human and a machine. If the interrogator does not successfully determine which of the other two is the human and which is the machine, then the question has been answered: this is a machine that can think.

A statue of Alan Turing on a park bench in Manchester.
The Alan Turing Memorial in Manchester

This imitation game is now a fiercely debated benchmark of artificial intelligence called the Turing test. Notice the shift in focus that Turing suggests: thinking is to be identified in terms of external behaviour, not in terms of any internal processes. Humans are still the yardstick for intelligence, but there is no requirement that a machine should think the way humans do, as long as it behaves in a way that suggests some sort of thinking to humans.

In his essay, Turing also discusses learning machines. Instead of building highly complex programs that would prescribe every aspect of a machine’s behaviour, we could build simpler programs that would prescribe mechanisms for learning, and then train the machine to learn the desired behaviour. Turing’s text provides an excellent metaphor that could be used in class to describe the essence of machine learning: “Instead of trying to produce a programme to simulate the adult mind, why not rather try to produce one which simulates the child’s? If this were then subjected to an appropriate course of education one would obtain the adult brain. We have thus divided our problem into two parts: the child-programme and the education process.”

A chess board with two pieces of each colour left.
Chess was among the games that early AI researchers like Alan Turing developed algorithms for.

It is remarkable how Turing even describes approaches that have since been evolved into established machine learning methods: evolution (genetic algorithms), punishments and rewards (reinforcement learning), randomness (Monte Carlo tree search). He even forecasts the main issue with some forms of machine learning: opacity. “An important feature of a learning machine is that its teacher will often be very largely ignorant of quite what is going on inside, although he may still be able to some extent to predict his pupil’s behaviour.”

The evolution of a definition

The term ‘artificial intelligence’ was coined in 1956, at an event called the Dartmouth workshop. It was a gathering of the field’s founders, researchers who would later have a huge impact, including John McCarthy, Claude Shannon, Marvin Minsky, Herbert Simon, Allen Newell, Arthur Samuel, Ray Solomonoff, and W.S. McCulloch.   

Go has vastly more possible moves than chess, and was thought to remain out of the reach of AI for longer than it did.

The simple and ambitious definition for artificial intelligence, included in the proposal for the workshop, is illuminating: ‘making a machine behave in ways that would be called intelligent if a human were so behaving’. These pioneers were making the assumption that ‘every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it’. This assumption turned out to be patently false and led to unrealistic expectations and forecasts. Fifty years later, McCarthy himself stated that ‘it was harder than we thought’.

Modern definitions of intelligence are of distinctly different flavour than the original one: ‘Intelligence is the quality that enables an entity to function appropriately and with foresight in its environment’ (Nilsson). Some even speak of rationality, rather than intelligence: ‘doing the right thing, given what it knows’ (Russell and Norvig).

A computer screen showing a complicated graph.
The amount of training data AI developers have access to has skyrocketed in the past decade.

Read the whole of this brief history of AI in Hello World #12

In the full article, which you can read in the free PDF copy of the issue, George looks at:

  • Early advances researchers made from the 1950s onwards while developing games algorithms, e.g. for chess.
  • The 1997 moment when Deep Blue, a purpose-built IBM computer, beating chess world champion Garry Kasparov using a search approach.
  • The 2011 moment when Watson, another IBM computer system, beating two human Jeopardy! champions using multiple techniques to answer questions posed in natural language.
  • The principles behind artificial neural networks, which have been around for decades and are now underlying many AI/machine learning breakthroughs because of the growth in computing power and availability of vast datasets for training.
  • The 2017 moment when AlphaGo, an artificial neural network–based computer program by Alphabet’s DeepMind, beating Ke Jie, the world’s top-ranked Go player at the time.
Stacks of server hardware behind metal fencing in a data centre.
Machine learning systems need vast amounts of training data, the collection and storage of which has only become technically possible in the last decade.

More on machine learning and AI education in Hello World #12

In your free PDF of Hello World issue 12, you’ll also find:

  • An interview with University of Cambridge statistician David Spiegelhalter, whose work shaped some of the foundations of AI, and who shares his thoughts on data science in schools and the limits of AI 
  • An introduction to Popbots, an innovative project by MIT to open AI to the youngest learners
  • An article by Ken Kahn, researcher in the Department of Education at the University of Oxford, on using the block-based Snap! language to introduce your learners to natural language processing
  • Unplugged and online machine learning activities for learners age 7 to 16 in the regular ‘Lesson plans’ section
  • And lots of other relevant articles

You can also read many of these articles online on the Hello World website.

Find more resources for AI and data science education

In Hello World issue 16, the focus is on all things data science and data literacy for your learners. As always, you can download a free copy of the issue. And on our Hello World podcast, we chat with practicing computing educators about how they bring AI, AI ethics, machine learning, and data science to the young people they teach.

If you want a practical introduction to the basics of machine learning and how to use it, take our free online course.

Drawing of a machine learning ars rover trying to decide whether it is seeing an alien or a rock.

There are still many open questions about what good AI and data science education looks like for young people. To learn more, you can watch our panel discussion about the topic, and join our monthly seminar series to hear insights from computing education researchers around the world.

We are also collating a growing list of educational resources about these topics based on our research seminars, seminar participants’ recommendations, and our own work. Find the resource list here.

The post Snapshots from the history of AI, plus AI education resources appeared first on Raspberry Pi.

How do we develop AI education in schools? A panel discussion

via Raspberry Pi

AI is a broad and rapidly developing field of technology. Our goal is to make sure all young people have the skills, knowledge, and confidence to use and create AI systems. So what should AI education in schools look like?

To hear a range of insights into this, we organised a panel discussion as part of our seminar series on AI and data science education, which we co-host with The Alan Turing Institute. Here our panel chair Tabitha Goldstaub, Co-founder of CogX and Chair of the UK government’s AI Council, summarises the event. You can also watch the recording below.

As part of the Raspberry Pi Foundation’s monthly AI education seminar series, I was delighted to chair a special panel session to broaden the range of perspectives on the subject. The members of the panel were:

  • Chris Philp, UK Minister for Tech and the Digital Economy
  • Philip Colligan, CEO of the Raspberry Pi Foundation 
  • Danielle Belgrave, Research Scientist, DeepMind
  • Caitlin Glover, A level student, Sandon School, Chelmsford
  • Alice Ashby, student, University of Brighton

The session explored the UK government’s commitment in the recently published UK National AI Strategy stating that “the [UK] government will continue to ensure programmes that engage children with AI concepts are accessible and reach the widest demographic.” We discussed what it will take to make this a reality, and how we will ensure young people have a seat at the table.

Two teenage girls do coding during a computer science lesson.

Why AI education for young people?

It was clear that the Minister felt it is very important for young people to understand AI. He said, “The government takes the view that AI is going to be one of the foundation stones of our future prosperity and our future growth. It’s an enabling technology that’s going to have almost universal applicability across our entire economy, and that is why it’s so important that the United Kingdom leads the world in this area. Young people are the country’s future, so nothing is complete without them being at the heart of it.”

A teacher watches two female learners code in Code Club session in the classroom.

Our panelist Caitlin Glover, an A level student at Sandon School, reiterated this from her perspective as a young person. She told us that her passion for AI started initially because she wanted to help neurodiverse young people like herself. Her idea was to start a company that would build AI-powered products to help neurodiverse students.

What careers will AI education lead to?

A theme of the Foundation’s seminar series so far has been how learning about AI early may impact young people’s career choices. Our panelist Alice Ashby, who studies Computer Science and AI at Brighton University, told us about her own process of deciding on her course of study. She pointed to the fact that terms such as machine learning, natural language processing, self-driving cars, chatbots, and many others are currently all under the umbrella of artificial intelligence, but they’re all very different. Alice thinks it’s hard for young people to know whether it’s the right decision to study something that’s still so ambiguous.

A young person codes at a Raspberry Pi computer.

When I asked Alice what gave her the courage to take a leap of faith with her university course, she said, “I didn’t know it was the right move for me, honestly. I took a gamble, I knew I wanted to be in computer science, but I wanted to spice it up.” The AI ecosystem is very lucky that people like Alice choose to enter the field even without being taught what precisely it comprises.

We also heard from Danielle Belgrave, a Research Scientist at DeepMind with a remarkable career in AI for healthcare. Danielle explained that she was lucky to have had a Mathematics teacher who encouraged her to work in statistics for healthcare. She said she wanted to ensure she could use her technical skills and her love for math to make an impact on society, and to really help make the world a better place. Danielle works with biologists, mathematicians, philosophers, and ethicists as well as with data scientists and AI researchers at DeepMind. One possibility she suggested for improving young people’s understanding of what roles are available was industry mentorship. Linking people who work in the field of AI with school students was an idea that Caitlin was eager to confirm as very useful for young people her age.

We need investment in AI education in school

The AI Council’s Roadmap stresses how important it is to not only teach the skills needed to foster a pool of people who are able to research and build AI, but also to ensure that every child leaves school with the necessary AI and data literacy to be able to become engaged, informed, and empowered users of the technology. During the panel, the Minister, Chris Philp, spoke about the fact that people don’t have to be technical experts to come up with brilliant ideas, and that we need more people to be able to think creatively and have the confidence to adopt AI, and that this starts in schools. 

A class of primary school students do coding at laptops.

Caitlin is a perfect example of a young person who has been inspired about AI while in school. But sadly, among young people and especially girls, she’s in the minority by choosing to take computer science, which meant she had the chance to hear about AI in the classroom. But even for young people who choose computer science in school, at the moment AI isn’t in the national Computing curriculum or part of GCSE computer science, so much of their learning currently takes place outside of the classroom. Caitlin added that she had had to go out of her way to find information about AI; the majority of her peers are not even aware of opportunities that may be out there. She suggested that we ensure AI is taught across all subjects, so that every learner sees how it can make their favourite subject even more magical and thinks “AI’s cool!”.

A primary school boy codes at a laptop with the help of an educator.

Philip Colligan, the CEO here at the Foundation, also described how AI could be integrated into existing subjects including maths, geography, biology, and citizenship classes. Danielle thoroughly agreed and made the very good point that teaching this way across the school would help prepare young people for the world of work in AI, where cross-disciplinary science is so important. She reminded us that AI is not one single discipline. Instead, many different skill sets are needed, including engineering new AI systems, integrating AI systems into products, researching problems to be addressed through AI, or investigating AI’s societal impacts and how humans interact with AI systems.

On hearing about this multitude of different skills, our discussion turned to the teachers who are responsible for imparting this knowledge, and to the challenges they face. 

The challenge of AI education for teachers

When we shifted the focus of the discussion to teachers, Philip said: “If we really want to equip every young person with the knowledge and skills to thrive in a world that shaped by these technologies, then we have to find ways to evolve the curriculum and support teachers to develop the skills and confidence to teach that curriculum.”

Teenage students and a teacher do coding during a computer science lesson.

I asked the Minister what he thought needed to happen to ensure we achieved data and AI literacy for all young people. He said, “We need to work across government, but also across business and society more widely as well.” He went on to explain how important it was that the Department for Education (DfE) gets the support to make the changes needed, and that he and the Office for AI were ready to help.

Philip explained that the Raspberry Pi Foundation is one of the organisations in the consortium running the National Centre for Computing Education (NCCE), which is funded by the DfE in England. Through the NCCE, the Foundation has already supported thousands of teachers to develop their subject knowledge and pedagogy around computer science.

A recent study recognises that the investment made by the DfE in England is the most comprehensive effort globally to implement the computing curriculum, so we are starting from a good base. But Philip made it clear that now we need to expand this investment to cover AI.

Young people engaging with AI out of school

Philip described how brilliant it is to witness young people who choose to get creative with new technologies. As an example, he shared that the Foundation is seeing more and more young people employ machine learning in the European Astro Pi Challenge, where participants run experiments using Raspberry Pi computers on board the International Space Station. 

Three teenage boys do coding at a shared computer during a computer science lesson.

Philip also explained that, in the Foundation’s non-formal CoderDojo club network and its Coolest Projects tech showcase events, young people build their dream AI products supported by volunteers and mentors. Among these have been autonomous recycling robots and AI anti-collision alarms for bicycles. Like Caitlin with her company idea, this shows that young people are ready and eager to engage and create with AI.

We closed out the panel by going back to a point raised by Mhairi Aitken, who presented at the Foundation’s research seminar in September. Mhairi, an Alan Turing Institute ethics fellow, argues that children don’t just need to learn about AI, but that they should actually shape the direction of AI. All our panelists agreed on this point, and we discussed what it would take for young people to have a seat at the table.

A Black boy uses a Raspberry Pi computer at school.

Alice advised that we start by looking at our existing systems for engaging young people, such as Youth Parliament, student unions, and school groups. She also suggested adding young people to the AI Council, which I’m going to look into right away! Caitlin agreed and added that it would be great to make these forums virtual, so that young people from all over the country could participate.

The panel session was full of insight and felt very positive. Although the challenge of ensuring we have a data- and AI-literate generation of young people is tough, it’s clear that if we include them in finding the solution, we are in for a bright future. 

What’s next for AI education at the Raspberry Pi Foundation?

In the coming months, our goal at the Foundation is to increase our understanding of the concepts underlying AI education and how to teach them in an age-appropriate way. To that end, we will start to conduct a series of small AI education research projects, which will involve gathering the perspectives of a variety of stakeholders, including young people. We’ll make more information available on our research pages soon.

In the meantime, you can sign up for our upcoming research seminars on AI and data science education, and peruse the collection of related resources we’ve put together.

The post How do we develop AI education in schools? A panel discussion appeared first on Raspberry Pi.

Recognizing handwritten MNIST digits on an Arduino Uno using LogNNet

via Arduino Blog

The Arduino Uno is famous for its ease of use and compact size, yet its microcontroller, the ATmega328P, is quite small. The 328P contains a mere 32KB of flash storage for programs and 2KB of RAM, which has traditionally made it unsuitable for machine learning applications. However, a team at the Institute of Physics and Technology at Petrozavodsk State University was able to cram an algorithm that can recognize the handwritten digits within the MNIST dataset. Without getting too complicated, the Uno takes in an array of pixels that range in value from 0 to 255, or one byte. The entire 28 by 28 grid is then flattened to a single array of 784 elements that is passed into a reservoir that holds the weights for each pixel. As the model continues to get trained, these weights are gradually adjusted until the output matches the correct digit.

Input data is read from the serial port and stored within an array, where it is then used within the LogNNet library to compute the layer values. Once everything has been passed through the neural network the resulting digit is printed to the serial monitor. Overall, the neural network’s variables in RAM are quite space-efficient and account for just over a kilobyte. 

As seen below, the researchers were able to achieve an accuracy of 82% with an inferencing time of around seven seconds, which is quite impressive for such a small chip. To read more about how the LogNNet reservoir neural network operates, be sure to check out the team’s paper.

Image: Izotov et al.

The post Recognizing handwritten MNIST digits on an Arduino Uno using LogNNet appeared first on Arduino Blog.