Tag Archives: Raspberry Pi 4

Hire Raspberry Pi as a robot sous-chef in your kitchen

via Raspberry Pi

Design Engineering student Ben Cobley has created a Raspberry Pi–powered sous-chef that automates the easier pan-cooking tasks so the head chef can focus on culinary creativity.

Ben named his invention OnionBot, as the idea came to him when looking for an automated way to perfectly soften onions in a pan while he got on with the rest of his dish. I have yet to manage to retrieve onions from the pan before they blacken so… *need*.

OnionBot robotic sous-chef set up in a kitchen
The full setup (you won’t need a laptop while you’re cooking, so you’ll have counter space)

A Raspberry Pi 4 Model B is the brains of the operation, with a Raspberry Pi Touch Display showing the instructions, and a Raspberry Pi Camera Module keeping an eye on the pan.

OnionBot robotic sous-chef hardware mounted on a board
Close up of the board-mounted hardware and wiring

Ben’s affordable solution is much better suited to home cooking than the big, expensive robotic arms used in industry. Using our tiny computer also allowed Ben to create something that fits on a kitchen counter.

OnionBot robotic sous-chef hardware list

What can OnionBot do?

  • Tells you on-screen when it is time to advance to the next stage of a recipe
  • Autonomously controls the pan temperature using PID feedback control
  • Detects when the pan is close to boiling over and automatically turns down the heat
  • Reminds you if you haven’t stirred the pan in a while
OnionBot robotic sous-chef development stages
Images from Ben’s blog on DesignSpark

How does it work?

A thermal sensor array suspended above the stove detects the pan temperature, and the Raspberry Pi Camera Module helps track the cooking progress. A servo motor controls the dial on the induction stove.

Screenshot of the image classifier of OnionBot robotic sous-chef
Labelling images to train the image classifier

No machine learning expertise was required to train an image classifier, running on Raspberry Pi, for Ben’s robotic creation; you’ll see in the video that the classifier is a really simple drag-and-drop affair.

Ben has only taught his sous-chef one pasta dish so far, and we admire his dedication to carbs.

Screenshot of the image classifier of OnionBot robotic sous-chef
Training the image classifier to know when you haven’t stirred the pot in a while

Ben built a control panel for labelling training images in real time and added labels at key recipe milestones while he cooked under the camera’s eye. This process required 500–1000 images per milestone, so Ben made a LOT of pasta while training his robotic sous-chef’s image classifier.

Diagram of networked drivers and devices in OnionBot robotic sous-chef

Ben open-sourced this project so you can collaborate to suggest improvements or teach your own robot sous-chef some more dishes. Here’s OnionBot on GitHub.

The post Hire Raspberry Pi as a robot sous-chef in your kitchen appeared first on Raspberry Pi.

Raspberry Pi High Quality security camera

via Raspberry Pi

DJ from the element14 community shows you how to build a red-lensed security camera in the style of Portal 2 using the Raspberry Pi High Quality Camera.

The finished camera mounted on the wall

Portal 2 is a puzzle platform game developed by Valve — a “puzzle game masquerading as a first-person shooter”, according to Forbes.

DJ playing with the Raspberry Pi High Quality Camera

Kit list

No code needed!

DJ was pleased to learn that you don’t need to write any code to make your own security camera, you can just use a package called motionEyeOS. All you have to do is download the motionEyeOS image, pop the flashed SD card into your Raspberry Pi, and you’re pretty much good to go.

Dj got everything set up on a 5″ screen attached to the Raspberry Pi

You’ll find that the default resolution is 640×480, so it will show up as a tiny window on your monitor of choice, but that can be amended.

Simplicity

While this build is very simple electronically, the 20-part 3D-printed shell is beautiful. A Raspberry Pi is positioned on a purpose-built platform in the middle of the shell, connected to the Raspberry Pi High Quality Camera, which sits at the front of that shell, peeking out.

All the 3D printed parts ready to assemble

The 5V power supply is routed through the main shell into the base, which mounts the build to the wall. In order to keep the Raspberry Pi cool, DJ made some vent holes in the lens of the shell. The red LED is routed out of the side and sits on the outside body of the shell.

Magnetising

Raspberry Pi 4 (centre) and Raspberry Pi High Quality Camera (right) sat inside the 3D printed shell

This build is also screwless: the halves of the shell have what look like screw holes along the edges, but they are actually 3mm neodymium magnets, so assembly and repair is super easy as everything just pops on and off.

The final picture (that’s DJ!)

You can find all the files you need to recreate this build, or you can ask DJ a question, at element14.com/presents.

The post Raspberry Pi High Quality security camera appeared first on Raspberry Pi.

Build an e-paper to-do list with Raspberry Pi

via Raspberry Pi

James Bruxton (or @xrobotosuk on Instagram) built an IoT-controlled e-paper message board using Raspberry Pi. Updating it is easy: just edit a Google sheet, and the message board will update with the new data.

Harnessing Google power

This smart message board uses e-paper, which has very low power consumption. Combining this with the Google Docs API (which allows you to write code to read and write to Google Docs) and Raspberry Pi makes it possible to build a message board that polls a Google Sheet and updates whenever there’s new data. This guide helped James write the Google Docs API code.

We’ll do #4 for you, James!

Why e-paper?

James’s original plan was to hook up his Raspberry Pi to a standard monitor and use Google Docs so people could update the display via mobile app. However, a standard monitor consumes a lot of power, due to its backlight, and if you set it to go into sleep mode, people would just walk past it and not see updates to the list unless they remember to wake the device up.

Raspberry Pi wearing its blue e-paper HAT on the left, which connects to the display on the right via a ribbon cable

Enter e-paper (the same stuff used for Kindle devices), which only consumes power when it’s updating. Once you’ve got the info you want on the e-paper, you can even disconnect it entirely from your power source and the screen will still display whatever the least update told it to. James’s top tip for your project: go for the smallest e-paper display possible, as those things are expensive. He went with this one, which comes with a HAT for Raspberry Pi and a ribbon cable to connect the two.

The display disconnected from any power and still clearly readable

The HAT has an adaptor for plugging into the Raspberry Pi GPIO pins, and a breakout header for the SPI pins. James found it’s not as simple as enabling the SPI on his Raspberry Pi and the e-paper display springing to life: you need a bit of code to enable the SPI display to act as the main display for the Raspberry Pi. Luckily, the code for this is on the wiki of Waveshare, the producer of HAT and display James used for this project.

Making it pretty

A 3D-printed case, which looks like a classic photo frame but with a hefty in-built stand to hold it up and provide enough space for the Raspberry Pi to sit on, is home to James’s finished smart to-do list. The e-paper is so light and thin it can just be sticky-taped into the frame.

The roomy frame stand

James’s creation is powered by Raspberry Pi 4, but you don’t need that much power, and he’s convinced you’ll be fine with any Raspberry Pi model that has 40 GPIO pins.

Extra points for this maker, as he’s put all the CAD files and code you’ll need to make your own e-paper message board on GitHub.

If you’re into e-paper stuff but are wedded to your handwritten to-do lists, then why not try building this super slow movie player instead? The blog squad went *nuts* for it when we posted it last month.

The post Build an e-paper to-do list with Raspberry Pi appeared first on Raspberry Pi.

Ultrasonically detect bats with Raspberry Pi

via Raspberry Pi

Welcome to October, the month in which spiderwebs become decor and anything vaguely gruesome is considered ‘seasonal’. Such as bats. Bats are in fact cute, furry creatures, but as they are part of the ‘Halloweeny animal’ canon, I have a perfect excuse to sing their praises.

baby bats in a row wrapped up like human babies
SEE? Baby bats wrapped up cute like baby humans

Tegwyn Twmffat was tasked with doing a bat survey on a derelict building, and they took to DesignSpark to share their Raspberry Pi–powered solution.

UK law protects nesting birds and roosting bats, so before you go knocking buildings down, you need a professional to check that no critters will be harmed in the process.

The acoustic signature of an echo-locating brown long-eared bat

The problem with bats, compared to birds, is they are much harder to spot and have a tendency to hang out in tiny wall cavities. Enter this big ultrasonic microphone.

Raspberry Pi 4 Model B provided the RAM needed for this build

After the building was declared safely empty of bats, Tegwyn decided to keep hold of the expensive microphone (the metal tube in the image above) and have a crack at developing their own auto-classification system to detect which type of bats are about.

How does it work?

The ultrasonic mic picks up the audio data using an STM M0 processor and streams it to Raspberry Pi via USB. Raspberry Pi runs Alsa driver software and uses the bash language to receive the data.

Tegwyn turned to the open-source GTK software to process the audio data

It turns out there are no publicly available audio records of bats, so Tegwyn took to their own back garden and found 6 species to record. And with the help of a few other bat enthusiasts, they cobbled together an audio dataset of 9 of the 17 bat species found in the UK!

Tegwyn’s original post about their project features a 12-step walkthrough, as well as all the code and commands you’ll need to build your own system. And here’s the GitHub repository, where you can check for updates.

The post Ultrasonically detect bats with Raspberry Pi appeared first on Raspberry Pi.

Raspberry Pi powered e-paper display takes months to show a movie

via Raspberry Pi

We loved the filmic flair of Tom Whitwell‘s super slow e-paper display, which takes months to play a film in full.

Living art

His creation plays films at about two minutes of screen time per 24 hours, taking a little under three months for a 110-minute film. Psycho played in a corner of his dining room for two months. The infamous shower scene lasted a day and a half.

Tom enjoys the opportunity for close study of iconic filmmaking, but you might like this project for the living artwork angle. How cool would this be playing your favourite film onto a plain wall somewhere you can see it throughout the day?

The Raspberry Pi wearing its e-Paper HAT

Four simple steps

Luckily, this is a relatively simple project – no hardcore coding, no soldering required – with just four steps to follow if you’d like to recreate it:

  1. Get the Raspberry Pi working in headless mode without a monitor, so you can upload files and run code
  2. Connect to an e-paper display via an e-paper HAT (see above image; Tom is using this one) and install the driver code on the Raspberry Pi
  3. Use Tom’s code to extract frames from a movie file, resize and dither those frames, display them on the screen, and keep track of progress through the film
  4. Find some kind of frame to keep it all together (Tom went with a trusty IKEA number)
Living artwork: the Psycho shower scene playing alongside still artwork in Tom’s home

Affordably arty

The entire build cost £120 in total. Tom chose a 2GB Raspberry Pi 4 and a NOOBS 64gb SD Card, which he bought from Pimoroni, one of our approved resellers. NOOBS included almost all the libraries he needed for this project, which made life a lot easier.

His original post is a dream of a comprehensive walkthrough, including all the aforementioned code.

2001: A Space Odyssey would take months to play on Tom’s creation

Head to the comments section with your vote for the creepiest film to watch in ultra slow motion. I came over all peculiar imaging Jaws playing on my living room wall for months. Big bloody mouth opening slooooowly (pales), big bloody teeth clamping down slooooowly (heart palpitations). Yeah, not going to try that. Sorry Tom.

The post Raspberry Pi powered e-paper display takes months to show a movie appeared first on Raspberry Pi.

Raspberry Pi enables world’s smallest iMac

via Raspberry Pi

This project goes a step further than most custom-made Raspberry Pi cases: YouTuber Michael Pick hacked a Raspberry Pi 4 and stuffed it inside this Apple lookalike to create the world’s smallest ‘iMac’.

Michael designed and 3D printed this miniature ‘iMac’ with what he calls a “gently modified” Raspberry Pi 4 at the heart. Everything you see is hand-painted and -finished to achieve an authentic, sleek Apple look.

This is “gentle modification” we just mentioned

Even after all that power tool sparking, this miniature device is capable of playing Minecraft at 1000 frames per second. Michael was set on making the finished project as thin as possible, so he had to slice off a couple of his Raspberry Pi’s USB ports and the Ethernet socket to make everything fit inside the tiny, custom-made case. This hacked setup leaves you with Bluetooth and wireless internet connections, which, as Michael explains in the build video, “if you’re a Mac user, that’s all you’re ever going to need.”

We love watching 3D printer footage set to relaxed elevator music

This teeny yet impactful project has even been featured on forbes.com, and that’s where we learned how the tightly packed tech manages to work in such a restricted space:

“A wireless dongle is plugged into one of the remaining USB ports to ensure it’s capable of connecting to a wireless keyboard and mouse, and a low-profile ribbon cable is used to connect the display to the Raspberry Pi. Careful crimping of cables and adapters ensures the mini iMac can be powered from a USB-C extension cable that feeds in under the screen, while the device also includes a single USB 2 port.”

Barry Collins | forbes.com

The maker also told forbes.com that this build was inspired by an iRaspbian software article from tech writer Barry Collins. iRaspbian puts a Mac-like interface — including Dock, Launcher and even the default macOS wallpaper — on top of a Linux distro. We guess Michael just wanted the case to match the content, hey?

Check out Michael’s YouTube channel for more inexplicably cool builds, such as a one billion volt Thor hammer.

The post Raspberry Pi enables world’s smallest iMac appeared first on Raspberry Pi.