Tag Archives: Raspberry Pi Resources

Monitor air quality with a Raspberry Pi

via Raspberry Pi

Add a sensor and some Python 3 to your Raspberry Pi to keep tabs on your local air pollution, in the project taken from Hackspace magazine issue 21.

Air is the very stuff we breathe. It’s about 78% nitrogen, 21% oxygen, and 1% argon, and then there’s the assorted ‘other’ bits and pieces – many of which have been spewed out by humans and our related machinery. Carbon dioxide is obviously an important polluter for climate change, but there are other bits we should be concerned about for our health, including particulate matter. This is just really small bits of stuff, like soot and smog. They’re grouped together based on their size – the most important, from a health perspective, are those that are smaller than 2.5 microns in width (known as PM2.5), and PM10, which are between 10 and 2.5 microns in width. This pollution is linked with respiratory illness, heart disease, and lung cancer.

Obviously, this is something that’s important to know about, but it’s something that – here in the UK – we have relatively little data on. While there are official sensors in most major towns and cities, the effects can be very localised around busy roads and trapped in valleys. How does the particular make-up of your area affect your air quality? We set out to monitor our environment to see how concerned we should be about our local air.

Getting started

We picked the SDS011 sensor for our project (see ‘Picking a sensor’ below for details on why). This sends output via a binary data format on a serial port. You can read this serial connection directly if you’re using a controller with a UART, but the sensors also usually come with a USB-to-serial connector, allowing you to plug it into any modern computer and read the data.

The USB-to-serial connector makes it easy to connect the sensor to a computer

The very simplest way of using this is to connect it to a computer. You can read the sensor values with software such as DustViewerSharp. If you’re just interested in reading data occasionally, this is a perfectly fine way of using the sensor, but we want a continuous monitoring station – and we didn’t want to leave our laptop in one place, running all the time. When it comes to small, low-power boards with USB ports, there’s one that always springs to mind – the Raspberry Pi.

First, you’ll need a Raspberry Pi (any version) that’s set up with the latest version of Raspbian, connected to your local network, and ideally with SSH enabled. If you’re unsure how to do this, there’s guidance on the Raspberry Pi website.

The wiring for this project is just about the simplest we’ll ever do: connect the SDS011 to the Raspberry Pi with the serial adapter, then plug the Raspberry Pi into a power source.

Before getting started on the code, we also need to set up a data repository. You can store your data wherever you like – on the SD card, or upload it to some cloud service. We’ve opted to upload it to Adafruit IO, an online service for storing data and making dashboards. You’ll need a free account, which you can sign up for on the Adafruit IO website – you’ll need to know your Adafruit username and Adafruit IO key in order to run the code below. If you’d rather use a different service, you’ll need to adjust the code to push your data there.

We’ll use Python 3 for our code, and we need two modules – one to read the data from the SDS011 and one to push it to Adafruit IO. You can install this by entering the following commands in a terminal:

pip3 install pyserial adafruit-io

You’ll now need to open a text editor and enter the following code:

This does a few things. First, it reads ten bytes of data over the serial port – exactly ten because that’s the format that the SDS011 sends data in – and sticks these data points together to form a list of bytes that we call data.

We’re interested in bytes 2 and 3 for PM2.5 and 4 and 5 for PM10. We convert these from bytes to integer numbers with the slightly confusing line:

pmtwofive = int.from_bytes(b’’.join(data[2:4]), byteorder=’little’) / 10

from_byte command takes a string of bytes and converts them into an integer. However, we don’t have a string of bytes, we have a list of two bytes, so we first need to convert this into a string. The b’’ creates an empty string of bytes. We then use the join method of this which takes a list and joins it together using this empty string as a separator. As the empty string contains nothing, this returns a byte string that just contains our two numbers. The byte_order flag is used to denote which way around the command should read the string. We divide the result by ten, because the SDS011 returns data in units of tens of grams per metre cubed and we want the result in that format aio.send is used to push data to Adafruit IO. The first command is the feed value you want the data to go to. We used kingswoodtwofive and kingswoodten, as the sensor is based in Kingswood. You might want to choose a more geographically relevant name. You can now run your sensor with:

python3 airquality.py

…assuming you called the Python file airquality.py
and it’s saved in the same directory the terminal’s in.

At this point, everything should work and you can set about running your sensor, but as one final point, let’s set it up to start automatically when you turn the Raspberry Pi on. Enter the command:

crontab -e

…and add this line to the file:

@reboot python3 /home/pi/airquality.py

With the code and electronic setup working, your sensor will need somewhere to live. If you want it outside, it’ll need a waterproof case (but include some way for air to get in). We used a Tupperware box with a hole cut in the bottom mounted on the wall, with a USB cable carrying power out via a window. How you do it, though, is up to you.

Now let’s democratise air quality data so we can make better decisions about the places we live.

Picking a sensor

There are a variety of particulate sensors on the market. We picked the SDS011 for a couple of reasons. Firstly, it’s cheap enough for many makers to be able to buy and build with. Secondly, it’s been reasonably well studied for accuracy. Both the hackAIR and InfluencAir projects have compared the readings from these sensors with more expensive, better-tested sensors, and the results have come back favourably. You can see more details at hsmag.cc/DiYPfg and hsmag.cc/Luhisr.

The one caveat is that the results are unreliable when the humidity is at the extremes (either very high or very low). The SDS011 is only rated to work up to 70% humidity. If you’re collecting data for a study, then you should discard any readings when the humidity is above this. HackAIR has a formula for attempting to correct for this, but it’s not reliable enough to neutralise the effect completely. See their website for more details: hsmag.cc/DhKaWZ.

Safe levels

Once you’re monitoring your PM2.5 data, what should you look out for? The World Health Organisation air quality guideline stipulates that PM2.5 not exceed 10 µg/m3 annual mean, or 25 µg/m3 24-hour mean; and that PM10 not exceed 20 µg/m3 annual mean, or 50 µg/m3 24-hour mean. However, even these might not be safe. In 2013, a large survey published in The Lancet “found a 7% increase in mortality with each 5 micrograms per cubic metre increase in particulate matter with a diameter of 2.5 micrometres (PM2.5).”

Where to locate your sensor

Standard advice for locating your sensor is that it should be outside and four metres above ground level. That’s good advice for general environmental monitoring; however, we’re not necessarily interested in general environmental monitoring – we’re interested in knowing what we’re breathing in.

Locating your monitor near your workbench will give you an idea of what you’re actually inhaling – useless for any environmental study, but useful if you spend a lot of time in there. We found, for example, that the glue gun produced huge amounts of PM2.5, and we’ll be far more careful with ventilation when using this tool in the future.

Adafruit IO

You can use any data platform you like. We chose Adafruit IO because it’s easy to use, lets you share visualisations (in the form of dashboards) with others, and connects with IFTTT to perform actions based on values (ours tweets when the air pollution is above legal limits).

One thing to be aware of is that Adafruit IO only holds data for 30 days (on the free tier at least). If you want historical data, you’ll need to sign up for the Plus option (which stores data for 60 days), or use an alternative storage method. You can use multiple data stores if you like.

Checking accuracy

Now you’ve got your monitoring station up and running, how do you know that it’s running properly? Perhaps there’s an issue with the sensor, or perhaps there’s a problem with the code. The easiest method of calibration is to test it against an accurate sensor, and most cities here in the UK have monitoring stations as part of Defra’s Automatic Urban and Rural Monitoring Network. You can find your local station here. Many other countries have equivalent public networks. Unless there is no other option, we would caution against using crowdsourced data for calibration, as these sensors aren’t themselves calibrated.

With a USB battery pack, you can head to your local monitoring point and see if your monitor is getting similar results to the monitoring network.

HackSpace magazine #21 is out now

You can read the rest of this feature in HackSpace magazine issue 21, out today in Tesco, WHSmith, and all good independent UK newsagents.

Or you can buy HackSpace mag directly from us — worldwide delivery is available. And if you’d like to own a handy digital version of the magazine, you can also download a free PDF.

The post Monitor air quality with a Raspberry Pi appeared first on Raspberry Pi.

Hack your old Raspberry Pi case for the Raspberry Pi 4

via Raspberry Pi

Hack your existing Raspberry Pi case to fit the layout of your new Raspberry Pi 4, with this handy “How to hack your existing Raspberry Pi case to fit the layout of your new Raspberry Pi 4” video!

Hack your old Raspberry Pi case to fit your Raspberry Pi 4

Hack your existing official Raspberry Pi case to fit the new Raspberry Pi 4, or treat yourself to the new official Raspberry Pi 4 case. The decision is yours!

How to hack your official Raspberry Pi case

  1. Take your old Raspberry Pi out of its case.
  2. Spend a little time reminiscing about all the fun times you had together.
  3. Reassure your old Raspberry Pi that this isn’t the end, and that it’ll always have a special place in your heart.
  4. Remember that one particular time – you know the one; wipe a loving tear from your eye.
  5. Your old Raspberry Pi loves you. It’s always been there for you. Why are you doing this?
  6. Look at the case. Look at it. Look how well it fits your old Raspberry Pi. Those fine, smooth edges; that perfect white and red combination. The three of you – this case, your old Raspberry Pi, and you – you make such a perfect team. You’re brilliant.
  7. Look at your new Raspberry Pi 4. Yes, it’s new, and faster, and stronger, but this isn’t about all that. This is about all you’ve gone through with your old Raspberry Pi. You’re just not ready to say goodbye. Not yet.
  8. Put your buddy, the old Raspberry Pi, back in its case and set it aside. There are still projects you can work on together; this is not the end. No, not at all.
  9. In fact, why do you keep calling it your old Raspberry Pi? There’s nothing old about it. It still works; it still does the job. Sure, your Raspberry Pi 4 can do things that this one can’t, and you’re looking forward to trying them out, but that doesn’t make this one redundant. Heck, if we went around replacing older models with newer ones all the time, Grandma would be 24 years old and you’d not get any of her amazing Sunday dinners, and you do love her honey-glazed parsnips.
  10. Turn to your new Raspberry Pi 4 and introduce yourself. It’s not its fault that you’re having a temporary crisis. It hasn’t done anything wrong. So take some time to really get to know your new friend.
  11. New friendships take time, and fresh beginnings, dare we say it…deserve new cases.
  12. Locate your nearest Raspberry Pi Approved Reseller and purchase the new Raspberry Pi 4 case, designed especially to make your new Raspberry Pi comfortable and secure.
  13. Reflect that this small purchase of a new case will support the charitable work of the Raspberry Pi Foundation. Enjoy a little warm glow inside. You did good today.
  14. Turn to your old keyboard

The post Hack your old Raspberry Pi case for the Raspberry Pi 4 appeared first on Raspberry Pi.

How to build databases using Python and text files | Hello World #9

via Raspberry Pi

In Hello World issue 9, Raspberry Pi’s own Mac Bowley shares a lesson that introduces students to databases using Python and text files.

In this lesson, students create a library app for their books. This will store information about their book collection and allow them to display, manipulate, and search their collection. You will show students how to use text files in their programs that act as a database.

The project will give your students practical examples of database terminology and hands-on experience working with persistent data. It gives opportunities for students to define and gain concrete experience with key database concepts using a language they are familiar with. The script that accompanies this activity can be adapted to suit your students’ experience and competency.

This ready-to-go software project can be used alongside approaches such as PRIMM or pair programming, or as a worked example to engage your students in programming with persistent data.

What makes a database?

Start by asking the students why we need databases and what they are: do they ever feel unorganised? Life can get complicated, and there is so much to keep track of, the raw data required can be overwhelming. How can we use computing to solve this problem? If only there was a way of organising and accessing data that would let us get it out of our head. Databases are a way of organising the data we care about, so that we can easily access it and use it to make our lives easier.

Then explain that in this lesson the students will create a database, using Python and a text file. The example I show students is a personal library app that keeps track of which books I own and where I keep them. I have also run this lesson and allowed the students pick their own items to keep track of — it just involves a little more planning time at the end. Split the class up into pairs; have each of them discuss and select five pieces of data about a book (or their own item) they would like to track in a database. They should also consider which type of data each of them is. Give them five minutes to discuss and select some data to track.

Databases are organised collections of data, and this allows them to be displayed, maintained, and searched easily. Our database will have one table — effectively just like a spreadsheet table. The headings on each of the columns are the fields: the individual pieces of data we want to store about the books in our collection. The information about a single book are called its attributes and are stored together in one record, which would be a single row in our database table. To make it easier to search and sort our database, we should also select a primary key: one field that will be unique for each book. Sometimes one of the fields we are already storing works for this purpose; if not, then the database will create an ID number that it uses to uniquely identify each record.

Create a library application

Pull the class back together and ask a few groups about the data they selected to track. Make sure they have chosen appropriate data types. Ask some if they can find any of the fields that would be a primary key; the answer will most likely be no. The ISBN could work, but for our simple application, having to type in a 10- or 13-digit number just to use for an ID would be overkill. In our database, we are going to generate our own IDs.

The requirements for our database are that it can do the following things: save data to a file, read data from that file, create new books, display our full database, allow the user to enter a search term, and display a list of relevant results based on that term. We can decompose the problem into the following steps:

  • Set up our structures
  • Create a record
  • Save the data to the database file
  • Read from the database file
  • Display the database to the user
  • Allow the user to search the database
  • Display the results

Have the class log in and power up Python. If they are doing this locally, have them create a new folder to hold this project. We will be interacting with external files and so having them in the same folder avoids confusion with file locations and paths. They should then load up a new Python file. To start, download the starter file from the link provided. Each student should make a copy of this file. At first, I have them examine the code, and then get them to run it. Using concepts from PRIMM, I get them to print certain messages when a menu option is selected. This can be a great exemplar for making a menu in any application they are developing. This will be the skeleton of our database app: giving them a starter file can help ease some cognitive load from students.

Have them examine the variables and make guesses about what they are used for.

  • current_ID – a variable to count up as we create records, this will be our primary key
  • new_additions – a list to hold any new records we make while our code is running, before we save them to the file
  • filename – the name of the database file we will be using
  • fields – a list of our fields, so that our dictionaries can be aligned with our text file
  • data – a list that will hold all of the data from the database, so that we can search and display it without having to read the file every time

Create the first record

We are going to use dictionaries to store our records. They reference their elements using keys instead of indices, which fit our database fields nicely. We are going to generate our own IDs. Each of these must be unique, so a variable is needed that we can add to as we make our records. This is a user-focused application, so let’s make it so our user can input the data for the first book. The strings, in quotes, on the left of the colon, are the keys (the names of our fields) and the data on the right is the stored value, in our case whatever the user inputs in response to our appropriate prompts. We finish this part of by adding the record to the file, incrementing the current ID, and then displaying a useful feedback message to the user to say their record has been created successfully. Your students should now save their code and run it to make sure there aren’t any syntax errors.

You could make use of pair programming, with carefully selected pairs taking it in turns in the driver and navigator roles. You could also offer differing levels of scaffolding: providing some of the code and asking them to modify it based on given requirements.

How to use the code in your class

To complete the project, your students can add functionality to save their data to a CSV file, read from a database file, and allow users to search the database. The code for the whole project is available at helloworld.cc/database.

An example of the code

You may want to give your students the entire piece of code. They can investigate and modify it to their own purpose. You can also lead them through it, having them follow you as you demonstrate how an expert constructs a piece of software. I have done both to great effect. Let me know how your classes get on! Get in touch at contact@helloworld.cc

Hello World issue 9

The brand-new issue of Hello World is out today, and available right now as a free PDF download from the Hello World website.

UK-based educators can also sign up to receive Hello World as printed magazine FOR FREE, direct to their door. And those outside the UK, educator or not, can subscribe to receive new digital issues of Hello World in their inbox on the day of release.

The post How to build databases using Python and text files | Hello World #9 appeared first on Raspberry Pi.

The NEW Official Raspberry Pi Beginner’s Guide: updated for Raspberry Pi 4

via Raspberry Pi

To coincide with the launch of Raspberry Pi 4, Raspberry Pi Press has created a new edition of The Official Raspberry Pi Beginner’s Guide book — as if this week wasn’t exciting enough! Weighing in at 252 pages, the book is even bigger than before, and it’s fully updated for Raspberry Pi 4 and the latest version of the Raspbian operating system, Buster.A picture of the front cover of the Raspberry Pi Beginner's Guide version two

The Official Raspberry Pi Beginner’s Guide

We’ve roped in Gareth Halfacree, full-time technology journalist and technical author, and the wonderful Sam Alder, illustrator of our incredible cartoons and animations, to put together the only guide you’ll ever need to get started with Raspberry Pi.

From setting up your Raspberry Pi on day one to taking your first steps into writing coding, digital making, and computing, The Official Raspberry Beginner’s Guide – 2nd Edition is great for users from age 7 to 107! It’s available now online from the Raspberry Pi Press store, with free international delivery, or from the real-life Raspberry Pi Store in Cambridge, UK.

As always, we have also released the guide as a free PDF, and you’ll soon be seeing physical copies on the shelves of Waterstones, Foyles, and other good bookshops.

The post The NEW Official Raspberry Pi Beginner’s Guide: updated for Raspberry Pi 4 appeared first on Raspberry Pi.

Make a retro console with RetroPie and a Raspberry Pi — part 2

via Raspberry Pi

Here’s part two of Lucy Hattersley’s wonderful retro games console tutorial. Part 1 of the tutorial lives here, for those of you who missed it.

Choose the network locale

RetroPie boots into EmulationStation, which is your starter interface. It’s currently displaying just the one option, RetroPie, which is used to set up the emulation options. As you add games to RetroPie, other systems will appear in EmulationStation.

With RetroPie selected, press the A button on the gamepad to open the configuration window. Use the D-pad to move down the options and select WiFi. You will see a warning message: ‘You don’t currently have your WiFi country set…’. Press the D-pad left to choose Yes, and press A. The interface will open raspi-config. At this point, it’s handy to switch to the keyboard and use that instead.

Choose 4 Localisation Options, and press the right arrow key on the keyboard to highlight Select, then press Enter.

Now choose 4 Change Wi-fi Country and pick your country from the list. We used GB Britain (UK). Highlight OK and press Enter to select it.

Now move right twice to choose Finish and press Enter. This will reboot the system.

Connect to wireless LAN

If you have a Raspberry Pi with an Ethernet connection, you can use an Ethernet cable to connect directly to your router/modem or network.

More likely, you’ll connect the Raspberry Pi to a wireless LAN network so you can access it when it’s beneath your television.

Head back into RetroPie from EmulationStation and down to the WiFi setting; choose Connect to WiFi network.

The window will display a list of nearby wireless LAN networks. Choose your network and use the keyboard to enter the wireless LAN password. Press Enter when you’re done. Choose the Exit option to return to the RetroPie interface.

Configuration tools

Now choose RetroPie Setup and then Configuration Tools. Here, in the Choose an option window, you’ll find a range of useful tools. As we’re using a USB gamepad, we don’t need the Bluetooth settings, but it’s worth noting they’re here.

We want to turn on Samba so we can share files from our computer directly to RetroPie. Choose Samba and Install RetroPie Samba shares, then select OK.

Now choose Cancel to back up to the Choose an option window, and then Back to return to the RetroPie-Setup script.

Run the setup script

Choose Update RetroPie-Setup script and press Enter. After the script has updated, press Enter again and you’ll be back at the Notice: window. Press Enter and choose Basic install; press Enter, choose Yes, and press Enter again to begin the setup and run the configuration script.

When the script has finished, choose Perform a reboot and Yes.

Turn on Samba in Windows

We’re going to use Samba to copy a ROM file (a video game image) from our computer to RetroPie.

Samba used to be installed by default in Windows, but it has recently become an optional installation. In Windows 10, click on the Search bar and type ‘Control Panel’. Click on Control Panel in the search results.

Now click Programs and Turn Windows features on or off. Scroll down to find SMB 1.0/CIFS File Sharing Support and click the + expand icon to reveal its options. Place a check in the box marked SMB 1.0/CIFS Client. Click OK. This will enable Samba client support on your Windows 10 PC so it can access the Raspberry Pi.

We’ve got more information on how Samba works on The MagPi’s website.

Get the game

On your Windows PC or Mac, open a web browser, and visit the Blade Buster website. This is a homebrew video game designed by High Level Challenge for old NES systems. The developer’s website is in Japanese — just click BLADE BUSTER Download to save the ROM file to your Downloads folder.

Open a File Explorer (or Finder) window and locate the BB_20120301.zip file in your Downloads folder. Don’t unzip the file.

Click on Network and you’ll see a RETROPIE share. Open it and locate the roms folder. Double-click roms and you’ll see folders for many classic systems. Drag and drop the BB_20120301.zip file and place it inside the nes folder.

Play the game

Press the Start button on your gamepad to bring up the Main Menu. Choose Quit and Restart EmulationStation. You’ll now see a Nintendo Entertainment System option with 1 Games Available below it. Click it and you’ll see BB_20120301 — this is Blade Buster. Press A to start the game. Have fun shooting aliens. Press Start and Analog (or whatever you’ve set as your hotkey) together when you’re finished; this will take you back to the game selection in EmulationStation.

If you’ve been setting up RetroPie on your monitor, now is the time to move it across to your main television. The RetroPie console will boot automatically and connect to the network, and then you can move ROM files over to it from your PC or Mac. At this point, you may notice black borders around the screen; if so, see the Fix the borders tip.

Enjoy your gaming system!

More top tips from Lucy

Change the resolution

Some games were designed for a much lower resolution, and scaling them up can look blocky on modern televisions. If you’d prefer to alter the resolution, choose ‘RetroPie setup’. Open raspi-config, Advanced Options, and Resolution. Here you’ll find a range of other resolution options to choose from.

Fix the borders

These are caused by overscan. Choose RetroPie from EmulationStation and raspi-config. Now select Advanced Options > Overscan and select No on the ‘Would you like to enable compensation for displays with overscan?’ window. Choose OK and then Finish. Choose Yes on the Reboot Now window. When the system has rebooted, you will see the borders are gone.

The MagPi magazine issue 81

This article is from the latest issue of The MagPi magazine, which is out today and can be purchased online, at the Raspberry Pi Store, or from many newsagents and bookshops, such as WHSmith and Barnes & Noble.

The MagPi magazine issue 81

You can also download issue 81 for free from The MagPi website, where you’ll also find information on subscription options, and the complete MagPi catalogue, including Essentials guides and books, all available to download for free.

the MagPi subscription

The post Make a retro console with RetroPie and a Raspberry Pi — part 2 appeared first on Raspberry Pi.

Make a retro console with RetroPie and a Raspberry Pi — part 1

via Raspberry Pi

Discover classic gaming on the Raspberry Pi and play homebrew ROMs, with this two-part tutorial from The MagPi Editor Lucy Hattersley.

Raspberry Pi retro games console

Turning a Raspberry Pi device into a retro games console is a fun project, and it’s one of the first things many a new Pi owner turns their hand to.

The appeal is obvious. Retro games are fun, and from a programming perspective, they’re a lot easier to understand than modern 3D powerhouses. The Raspberry Pi board’s small form factor, low power usage, HDMI connection, and wireless networking make it a perfect micro-console that can sit under your television.

RetroPie

There are a bunch of different emulators around for Raspberry Pi. In this tutorial, we’re going to look at RetroPie.

RetroPie combines Raspbian, EmulationStation, and RetroArch into one handy image. With RetroPie you can emulate arcade games, as well as titles originally released on a host of 8-bit, 16-bit, and even 32- and 64-bit systems. You can hook up a joypad; we’re going to use the Wireless USB Game Controller, but most other USB game controllers will work.

You can also use Bluetooth to connect a controller from most video games consoles. RetroPie has an interface that will be very familiar to anyone who has used a modern games console, and because it is open-source, it is constantly being improved.

You can look online for classic games, but we prefer homebrew and modern releases coded for classic systems. In this tutorial, we will walk you through the process of setting up RetroPie, configuring a gamepad, and running a homebrew game called Blade Buster.

Get your microSD card ready

RetroPie is built on top of Raspbian (the operating system for Raspberry Pi). While it is possible to install RetroPie from the desktop interface, it’s far easier to format a microSD card† and copy a new RetroPie image to the blank card. This ensures all the settings are correct and makes setup much easier. Our favourite method of wiping microSD cards on a PC or Apple Mac is to use SD Memory Card Formatter.

Attach the microSD card to your Windows or Mac computer and open SD Card Formatter. Ensure the card is highlighted in the Select card section, then click Format.

Download RetroPie

Download the RetroPie image. It’ll be downloaded as a gzip file; the best way to expand this on Windows is using 7-Zip (7-zip.org).

With 7-Zip installed, right-click the retropie-4.4-rpi2_rpi3.img.gz file and choose 7-Zip > Extract here. Extract GZ files on a Mac or Linux PC using gunzip -k <filename.gz> (the -k option keeps the original GZ file).

gunzip -k retropie-4.4-rpi2_rpi3.img.gz

Flash the image

We’re going to use Etcher to copy the retropie-4.4-rpi2_rpi3.img file to our freshly formatted microSD card. Download Etcher. Open Etcher and click Select Image, then choose the retropie-4.4-rpi2_rpi3.img image file and click Open.

Etcher should have already located the microSD card; remove and replace it if you see a Select Drive button. Click Flash! to copy the RetroPie image to the microSD card.

See our guide for more information on how to use Etcher to flash SD cards.

Set up the Raspberry Pi

Insert the flashed microSD card to your Raspberry Pi. Now attach the Raspberry Pi to a TV or monitor using the HDMI cable. Connect the USB dongle from the Wireless USB Game Controller to the Raspberry Pi. Also attach a keyboard (you’ll need this for the setup process).

Insert the batteries in the Wireless USB Game Controller and set the power switch (on the back of the device) to On. Once everything is connected, attach a power supply to the Raspberry Pi.

See our quickstart guide for more detailed information on setting up a Raspberry Pi.

Configure the gamepad

When RetroPie starts, you should see Welcome screen displaying the message ‘1 gamepad detected’. Press and hold one of the buttons on the pad, and you will see the Configuring screen with a list of gamepad buttons and directions.

Tap the D-pad (the four-way directional control pad on the far left) up on the controller and ‘HAT 0 UP’ will appear. Now tap the D-pad down.
Map the A, B, X, Y buttons to:

A: red circle
B: blue cross
X: green triangle
Y: purple square

The Left and Right Shoulder buttons refer to the topmost buttons on the rear of the controller, while the Triggers are the larger lower buttons.

Push the left and right analogue sticks in for the Left and Right Thumbs. Click OK when you’re done.

Top tips from Lucy

Install Raspbian desktop

RetroPie is built on top of the Raspbian operating system. You might be tempted to install RetroPie on top of the Raspbian with Desktop interface, but it’s actually much easier to do it the other way around. Open RetroPie from EmulationStation and choose RetroPie setup. Select Configuration tools and Raspbian tools. Then choose Install Pixel desktop environment and Yes.

When it’s finished, choose Quit and Restart EmulationStation. When restarted, EmulationStation will display a Ports option. Select it and choose Desktop to boot into the Raspbian desktop interface.

Username and password

If RetroPie asks you for the username and password during boot, the defaults are pi and raspberry.

The MagPi magazine issue 81

The rest of this article can be found in the latest issue of The MagPi magazine, which is out now and can be purchased online, at the Raspberry Pi Store, or from many independent bookshops, such as WHSmith and Barnes & Noble. We’ll also post the second half on the blog tomorrow!

The MagPi magazine issue 81

You can also download issue 81 for free from The MagPi website, where you’ll find information on subscription options, and the complete MagPi catalogue, including Essentials guides and books, all available to download for free.

the MagPi subscription

The post Make a retro console with RetroPie and a Raspberry Pi — part 1 appeared first on Raspberry Pi.