Tag Archives: research

Join us at the launch event of the Raspberry Pi Computing Education Research Centre

via Raspberry Pi

Last summer, the Raspberry Pi Foundation and the University of Cambridge Department of Computer Science and Technology created a new research centre focusing on computing education research for young people in both formal and non-formal education. The Raspberry Pi Computing Education Research Centre is an exciting venture through which we aim to deliver a step-change for the field.

school-aged girls and a teacher using a computer together.

Computing education research that focuses specifically on young people is relatively new, particularly in contrast to established research disciplines such as those focused on mathematics or science education. However, computing is now a mandatory part of the curriculum in several countries, and being taken up in education globally, so we need to rigorously investigate the learning and teaching of this subject, and do so in conjunction with schools and teachers.

You’re invited to our in-person launch event

To celebrate the official launch of the Raspberry Pi Computing Education Research Centre, we will be holding an in-person event in Cambridge, UK on Weds 20 July from 15.00. This event is free and open to all: if you are interested in computing education research, we invite you to register for a ticket to attend. By coming together in person, we want to help strengthen a collaborative community of researchers, teachers, and other education practitioners.

The launch event is your opportunity to meet and mingle with members of the Centre’s research team and listen to a series of short talks. We are delighted that Prof. Mark Guzdial (University of Michigan), who many readers will be familiar with, will be travelling from the US to join us in cutting the ribbon. Mark has worked in computer science education for decades and won many awards for his research, so I can’t think of anybody better to be our guest speaker. Our other speakers are Prof. Alastair Beresford from the Department of Computer Science and Technology, and Carrie Anne Philbin MBE, our Director of Educator Support at the Foundation.

The event will take place at the Department of Computer Science and Technology in Cambridge. It will start at 15.00 with a reception where you’ll have the chance to talk to researchers and see the work we’ve been doing. We will then hear from our speakers, before wrapping up at 17.30. You can find more details about the event location on the ticket registration page.

Our research at the Centre

The aim of the Raspberry Pi Computing Education Research Centre is to increase our understanding of teaching and learning computing, computer science, and associated subjects, with a particular focus on young people who are from backgrounds that are traditionally under-represented in the field of computing or who experience educational disadvantage.

Young learners at computers in a classroom.

We have been establishing the Centre over the last nine months. In October, I was appointed Director, and in December, we were awarded funding by Google for a one-year research project on culturally relevant computing teaching, following on from a project at the Raspberry Pi Foundation. The Centre’s research team is uniquely positioned, straddling both the University and the Foundation. Our two organisations complement each other very well: the University is one of the highest-ranking universities in the world and renowned for its leading-edge academic research, and the Raspberry Pi Foundation works with schools, educators, and learners globally to pursue its mission to put the power of computing into the hands of young people.

In our research at the Centre, we will make sure that:

  1. We collaborate closely with teachers and schools when implementing and evaluating research projects
  2. We publish research results in a number of different formats, as promptly as we can and without a paywall
  3. We translate research findings into practice across the Foundation’s extensive programmes and with our partners

We are excited to work with a large community of teachers and researchers, and we look forward to meeting you at the launch event.

Stay up to date

At the end of June, we’ll be launching a new website for the Centre at computingeducationresearch.org. This will be the place for you to find out more about our projects and events, and to sign up to our newsletter. For announcements on social media, follow the Raspberry Pi Foundation on Twitter or Linkedin.

The post Join us at the launch event of the Raspberry Pi Computing Education Research Centre appeared first on Raspberry Pi.

Customizable artificial intelligence and gesture recognition

via Arduino Blog

In many respects we think of artificial intelligence as being all encompassing. One AI will do any task we ask of it. But in reality, even when AI reaches the advanced levels we envision, it won’t automatically be able to do everything. The Fraunhofer Institute for Microelectronic Circuits and Systems has been giving this a lot of thought.

AI gesture training

Okay, so you’ve got an AI. Now you need it to learn the tasks you want it to perform. Even today this isn’t an uncommon exercise. But the challenge that Fraunhofer IMS set itself was training an AI without any additional computers.

As a test case, an Arduino Nano 33 BLE Sense was employed to build a demonstration device. Using only the onboard 9-axis motion sensor, the team built an untethered gesture recognition controller. When a button is pressed, the user draws a number in the air, and corresponding commands are wirelessly sent to peripherals. In this case, a robotic arm.

Embedded intelligence

At first glance this might not seem overly advanced. But consider that it’s running entirely from the device, with just a small amount of memory and an Arduino Nano. Fraunhofer IMS calls this “embedded intelligence,” as it’s not the robot arms that’s clever, but the controller itself.

This is achieved when training the device using a “feature extraction” algorithm. When the gesture is executed, the artificial neural network (ANN) is able to pick out only the relevant information. This allows for impressive data reduction and a very efficient, compact AI.

Fraunhofer IMS Arduino Nano with Gesture Recognition

Obviously this is just an example use case. It’s easy to see the massive potential that this kind of compact, learning AI could have. Whether it’s in edge control, industrial applications, wearables or maker projects. If you can train a device to do the job you want, it can offer amazing embedded intelligence with very few resources.

The post Customizable artificial intelligence and gesture recognition appeared first on Arduino Blog.

FluSense takes on COVID-19 with Raspberry Pi

via Raspberry Pi

Raspberry Pi devices are often used by scientists, especially in biology to capture and analyse data, and a particularly striking – and sobering – project has made the news this week. Researchers at UMass Amherst have created FluSense, a dictionary-sized piece of equipment comprising a cheap microphone array, a thermal sensor, an Intel Movidius 2 neural computing engine, and a Raspberry Pi. FluSense monitors crowd sounds to forecast outbreaks of viral respiratory disease like seasonal flu; naturally, the headlines about their work have focused on its potential relevance to the COVID-19 pandemic.

A photo of Forsad Al Hossain and Tauhidur Rahman with the FluSense device alongside a logo from the Amherst University of Massachusetts

Forsad Al Hossain and Tauhidur Rahman with the FluSense device. Image courtesy of the University of Massachusetts Amherst

The device can distinguish coughing from other sounds. When cough data is combined with information about the size of the crowd in a location, it can provide an index predicting how many people are likely to be experiencing flu symptoms.

It was successfully tested in in four health clinic waiting rooms, and now, PhD student Forsad Al Hossain and his adviser, assistant professor Tauhidur Rahman, plan to roll FluSense out in other large spaces to capture data on a larger scale and strengthen the device’s capabilities. Privacy concerns are mitigated by heavy encryption, and Al Hossain and Rahman explain that the emphasis is on aggregating data, not identifying sickness in any single patient.

The researchers believe the secret to FluSense’s success lies in how much of the processing work is done locally, via the neural computing engine and Raspberry Pi: “Symptom information is sent wirelessly to the lab for collation, of course, but the heavy lifting is accomplished at the edge.”

A bird's-eye view of the components inside the Flu Sense device

Image courtesy of the University of Massachusetts Amherst

FluSense offers a different set of advantages to other tools, such as the extremely popular self-reporting app developed by researchers at Kings College Hospital in London, UK, together with startup Zoe. Approaches like this rely on the public to sign up, and that’s likely to skew the data they gather, because people in some demographic groups are more likely than others to be motivated and able to participate. FluSense can be installed to capture data passively from groups across the entire population. This could be particularly helpful to underprivileged groups who are less likely to have access to healthcare.

Makers, engineers, and scientists across the world are rising to the challenge of tackling COVID-19. One notable initiative is the Montreal General Hospital Foundation’s challenge to quickly design a low-cost, easy to use ventilator which can be built locally to serve patients, with a prize of CAD $200,000 on offer. The winning designs will be made available to download for free.

There is, of course, loads of chatter on the Raspberry Pi forum about the role computing has in beating the virus. We particularly liked this PSA letting you know how to free up some of your unused processing power for those researching treatments.

screenshot of the hand washer being built from a video on instagram

Screenshot via @deeplocal on Instagram

And to end on a cheering note, we *heart* this project from @deeplocal on Instagram. They’ve created a Raspberry Pi-powered soap dispenser which will play 20 seconds of your favourite song to keep you at the sink and make sure you’re washing your hands for long enough to properly protect yourself.

The post FluSense takes on COVID-19 with Raspberry Pi appeared first on Raspberry Pi.

Attend our Cambridge Computing Education Research Symposium

via Raspberry Pi

Are you an academic, researcher, student, or educator who is interested in computing education research? Then come and join us in Cambridge, UK on 1 April 2020 for discussion and networking at our first-ever research symposium.

Dr Natalie Rusk from the MIT Media Lab is our keynote speaker

Dr Natalie Rusk from the MIT Media Lab is our keynote speaker

Join our symposium

At the Raspberry Pi Foundation, we carry out research that deepens our understanding of how young people learn about computing and digital making and helps to increase the impact of our work and advance the field of computing education.

As part of our research work, we are launching the Cambridge Computing Education Research Symposium, a new one-day symposium hosted jointly by us and the University of Cambridge.

The theme of the symposium is school-level computing education, both formal and non-formal. The symposium will offer an opportunity for researchers and educators to share their work, meet others with similar interests, and build collaborative projects and networks.

University of Cambridge Computer Laboratory

The William Gates Building in Cambridge houses the Department of Computer Science and Technology (Computer Laboratory) and will be the symposium venue

The symposium will take place on 1 April 2020 at the Department of Computer Science and Technology. The day will include a range of talks and a poster session, as well as a keynote speech from Dr Natalie Rusk, Research Scientist at the MIT Media Laboratory and one of the creators of the Scratch programming language.

Registration for the symposium is now open: book your place today!

Pre-symposium workshops and networking

When you register to attend, you’ll also have the chance to sign up for one of two parallel workshops taking place on 31 March 2020 at the Raspberry Pi Foundation office in Cambridge.

Workshop 1 concerns the topic of gender balance in computing, while in workshop 2, we’ll consider what research-in-practice looks like in the computing classroom.

The workshops will draw on the experiences of everyone who is participating, and they’ll provide a forum for innovative ideas and new opportunities for collaboration to emerge.

You’re also invited to join us on the evening of 31 March for an informal networking event over food and drink at the Raspberry Pi Foundation office — a great chance to meet, mingle, and make connections ahead of the symposium day.

Register for the symposium to secure your place at these events! We look forward to meeting you there.

The post Attend our Cambridge Computing Education Research Symposium appeared first on Raspberry Pi.